171,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.
Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.
* Provides an overview of the evolution of display technologies and manufacturing
* Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications
* Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing
* Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing
* Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair
* Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing
Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.
This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.
Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.
* Provides an overview of the evolution of display technologies and manufacturing
* Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications
* Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing
* Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing
* Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair
* Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing
Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.
JUN SOUK, PHD is a Professor in the Department of Electronic Engineering, Hanyang University, South Korea.
SHINJI MOROZUMI, PHD is the founder and chairman of Crystage Inc., Japan.
FANG-CHEN LUO, PHD is advisor to the President and Fellow of AU Optronics, Taiwan.
ION BITA, PHD leads development of display technologies and components at Apple Inc., USA.
Fang¿Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita 1.1 Introduction 1 1.2 Historic Review of TFT¿LCD Manufacturing Technology Progress 1 1.2.1 Early Stage TFT and TFT¿Based Displays 2 1.2.2 The 1990s: Initiation of TFT¿LCD Manufacturing and Incubation of TFT¿LCD Products 2 1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4 1.2.4 The 2000s: A Golden Time for LCD¿TV Manufacturing Technology Advances 4 1.3 Analyzing the Success Factors in LCD Manufacturing 5 1.3.1 Scaling the LCD Substrate Size 7 1.3.2 Major Milestones in TFT¿LCD Manufacturing Technology 9 1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9 1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9 1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10 1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10 References 11 2 TFT Array Process Architecture and Manufacturing Process Flow 13Chiwoo Kim 2.1 Introduction 13 2.2 Material Properties and TFT Characteristics of äSi, LTPS, and Metal Oxide TFTs 15 2.2.1 äSi TFT 15 2.2.2 LTPS TFT 16 2.2.2.1 Excimer Laser Annealing (ELA) 17 2.2.3 Amorphous Oxide Semiconductor TFTs 22 2.3 äSi TFT Array Process Architecture and Process Flow 22 2.3.1 Four¿Mask Count Process Architecture for TFT¿LCDs 24 2.4 Poly¿Si TFT Architecture and Fabrication 27 2.5 Oxide Semiconductor TFT Architecture and Fabrication 30 2.6 TFT LCD Applications 32 2.7 Development of SLS¿Based System on Glass Display [1, 11, 14, 15] 33 References 35 3 Color Filter Architecture, Materials, and Process Flow 39Young Seok Choi, Musun Kwak, and Youn Sung Na 3.1 Introduction 39 3.2 Structure and Role of the Color Filter 39 3.2.1 Red, Green, and Blue (RGB) Layer 40 3.2.1.1 Color Coordinate and Color Gamut 41 3.2.2 Black Matrix 44 3.2.3 Overcoat and Transparent Electrode 45 3.2.4 Column Spacer 46 3.3 Color Filter Manufacturing Process Flow 46 3.3.1 Unit Process 46 3.3.1.1 Formation of Black Matrix 46 3.3.1.2 Formation of RGB Layer 48 3.3.1.3 Overcoat (OC) 51 3.3.1.4 Formation of ITO Electrodes 53 3.3.1.5 Column Spacer (Pattern Spacer) 53 3.3.2 Process Flow for Different LC Mode 54 3.3.2.1 Color Filter for the TN Mode 54 3.3.2.2 Color Filter for the IPS Mode 54 3.3.2.3 Color Filter for the VA Mode 55 3.4 New Color Filter Design 55 3.4.1 White Color (Four Primary Colors) Technology 55 3.4.2 Color Filter on TFT 56 References 57 4 Liquid Crystal Cell Process 59Heung¿Shik Park and Ki¿Chul Shin 4.1 Introduction 59 4.2 Liquid Crystal Cell Process 59 4.2.1 Alignment Layer Treatment 61 4.2.2 Process of Applying PI Layers 62 4.2.3 Rubbing Process 63 4.2.4 Photo¿Alignment Process 64 4.2.5 LC Filling Process 65 4.2.5.1 Vacuum Filling Method 66 4.2.5.2 End Seal Process 66 4.2.5.3 One Drop Filling (ODF) Method 67 4.2.6 Vacuum Assembly Process 68 4.2.7 Polarizer Attachment Process 69 4.3 Conclusions 70 Acknowledgments 70 References 70 5 TFT¿LCD Module and Package Process 73Chun Chang Hung 5.1 Introduction 73 5.2 Driver IC Bonding: TAB and COG 73 5.3 Introduction to Large¿Panel JI Process 74 5.3.1 COF Bonding 75 5.3.1.1 Edge Clean 75 5.3.1.2 ACF Attachment 76 5.3.1.3 COF Pre¿Bonding 77 5.3.1.4 COF Main Bonding 78 5.3.1.5 Lead Check 78 5.3.1.6 Silicone Dispensing 78 5.3.2 PCB Bonding 79 5.3.3 PCB Test 79 5.3.4 Press Heads: Long Bar or Short Bar 79 5.4 Introduction to Small¿Panel JI Process 79 5.4.1 Beveling 80 5.4.2 Panel Cleaning 80 5.4.3 Polarizer Attachment 80 5.4.4 Chip on Glass (COG) Bonding 81 5.4.5 FPC on Glass (FOG) Bonding 81 5.4.6 Optical Microscope (OM) Inspection 81 5.4.7 UV Glue Dispense 82 5.4.8 Post Bonding Inspection (PBI) 82 5.4.9 Protection Glue Dispensing 82 5.5 LCD Module Assembly 83 5.6 Aging 84 5.7 Module in Backlight or Backlight in Module 85 References 86 6 LCD Backlights 87Insun Hwang and Jae¿Hyeon Ko 6.1 Introduction 87 6.2 LED Sources 90 6.2.1 GaN Epi¿Wafer on Sapphire 92 6.2.2 LED Chip 93 6.2.3 Light Extraction 94 6.2.4 LED Package 96 6.2.5 SMT on FPCB 97 6.3 Light Guide Plate 98 6.3.1 Optical Principles of LGP 98 6.3.2 Optical Pattern Design 99 6.3.3 Manufacturing of LGP 101 6.3.3.1 Injection Molding 101 6.3.3.2 Screen Printing 102 6.3.3.3 Other Methods 103 6.4 Optical Films 104 6.4.1 Diffuser 106 6.4.2 Prism Film 107 6.4.3 Reflector 108 6.4.4 Other Films 108 6.5 Direct¿Type BLU 111 6.6 Summary 111 References 112 7 TFT Backplane and Issues for OLED 115Chiwoo Kim 7.1 Introduction 115 7.2 LTPS TFT Backplane for OLED Films 116 7.2.1 Advanced Excimer Laser Annealing (AELA) for Large¿Sized AMOLED Displays 117 7.2.2 Line¿Scan Sequential Lateral Solidification Process for AMOLED Application 120 7.3 Oxide Semiconductor TFT for OLED 122 7.3.1 Oxide TFT-Based OLED for Large¿Sized TVs 123 7.4 Best Backplane Solution for AMOLED 125 References 127 8A OLED Manufacturing Process for Mobile Application 129Jang Hyuk Kwon and Raju Lampande 8A.1 Introduction 129 8A.2 Current Status of AMOLED for Mobile Display 130 8A.2.1 Top Emission Technology 130 8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133 8A.4 Encapsulation Techniques for OLEDs 135 8A.4.1 Frit Sealing 135 8A.4.2 Thin¿Film Encapsulation 136 8A.5 Flexible OLED technology 137 8A.6 AMOLED Manufacturing Process 137 8A.7 Summary 140 References 140 8B OLED Manufacturing Process for TV Application 143Chang Wook Han and Yoon Heung Tak 8B.1 Introduction 143 8B.2 Fine Metal Mask (FMM) 144 8B.3 Manufacturing Process for White OLED and Color Filter Methods 147 8B.3.1 One¿Stacked White OLED Device 149 8B.3.2 Two¿Stacked White OLED Device 152 8B.3.3 Three¿Stacked White¿OLED Device 155 References 157 9 OLED Encapsulation Technology 159Young¿Hoon Shin 9.1 Introduction 159 9.2 Principles of OLED Encapsulation 159 9.2.1 Effect of H2O 160 9.3 Classification of Encapsulation Technologies 162 9.3.1 Edge Seal 163 9.3.2 Frit Seal 164 9.3.3 Dam and Fill 166 9.3.4 Face Seal 167 9.3.5 Thin¿Film Encapsulation (TFE) 168 9.4 Summary 170 References 170 10 Flexible OLED Manufacturing 173Woojae Lee and Jun Souk 10.1 Introduction 173 10.2 Critical Technologies in Flexible OLED Display 174 10.2.1 High¿Temperature PI Film 175 10.2.2 Encapsulation Layer 176 10.2.2.1 Thin¿Film Encapsulation (TFE) Method 176 10.2.2.2 Hyrid Encapsulation Method 177 10.2.2.3 Other Encapsulation Methods 178 10.2.2.4 Measurement of Barrier Performance 179 10.2.3 Laser Lift¿Off 180 10.2.4 Touch Sensor on F¿OLED 181 10.3 Process Flow of F¿OLED 181 10.3.1 PI Film Coating and Curing 181 10.3.2 LTPS TFT Backplane Process 183 10.3.3 OLED Deposition Process 183 10.3.4 Thin¿Film Encapsulation 185 10.3.5 Laser Lift¿Off 185 10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185 10.3.7 Touch Sensor Attach 186 10.3.8 Circular Polarizer Attach 186 10.3.9 Module Assembly (Bonding Drive IC) 186 10.4 Foldable OLED 186 10.5 Summary 188 References 189 11A Metal Lines and ITO PVD 193Hyun Eok Shin, Chang Oh Jeong, and Junho Song 11A.1 Introduction 193 11A.1.1 Basic Requirements of Metallization for Display 193 11A.1.2 Thin¿Film Deposition by Sputtering 195 11A.2 Metal Line Evolution in Past Years of TFT¿LCD 198 11A.2.1 Gate Line Metals 199 11A.2.1.1 Al and Al Alloy Electrode 199 11A.2.1.2 Cu Electrode 201 11A.2.2 Data line (Source/Drain) Metals 202 11A.2.2.1 Data Al Metal 202 11A.2.2.2 Data Cu Metal 203 11A.2.2.3 Data Chromium (Cr) Metal 203 11A.2.2.4 Molybdenum (Mo) Metal 203 11A.2.2.5 Titanium (Ti) Metal 204 11A.3 Metallization for OLED Display 205 11A.3.1 Gate Line Metals 205 11A.3.2 Source/Drain Metals 205 11A.3.3 Pixel Anode 206 11A.4 Transparent Electrode 207 References 208 11B Thin¿Film PVD: Materials, Processes, and Equipment 209Tetsuhiro Ohno 11B.1 Introduction 209 11B.2 Sputtering Method 210 11B.3 Evolution of Sputtering Equipment for FPD Devices 212 11B.3.1 Cluster Tool for Gen 2 Size 212 11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213 11B.3.3 Vertical Cluster Tool for Gen 8 Size 213 11B.4 Evolution of Sputtering Cathode 215 11B.4.1 Cathode Structure Evolution 215 11B.4.2 Dynamic Multi Cathode for LTPS 217 11B.4.3 Cathode Selection Strategy 217 11B.5 Transparent Oxide Semiconductor (TOS) Thin¿Film Deposition Technology 218 11B.5.1 Deposition Equipment for TOS¿TFT 218 11B.5.2 New Cathode Structure for TOS¿TFT 219 11B.6 Metallization Materials and Deposition Technology 221 References 223 11C Thin¿Film PVD (Rotary Target) 225 Marcus Bender 11C. 1 Introduction 225 11C.2 Source Technology 227 11C.2.1 Planar Cathodes 227 11C.2.2 Rotary Cathodes 229 11C.2.3 Rotary Cathode Array 230 11C.3 Materials, Processes, and Characterization 232 11C.3.1 Introduction 232 11C.3.2 Backplane Metallization 232 11C.3.3 Layers for Metal¿Oxide TFTs 234 11C.3.4 Transparent Electrodes 236 11C.3.5 Adding Touch Functionality and Improving End¿User Experience 238 References 239 12A Thin¿Film PECVD (AKT) 241Tae Kyung Won, Soo Young Choi, and John M. White 12A.1 Introduction 241 12A.2 Process Chamber Technology 243 12A.2.1 Electrode Design 243 12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243 12A.2.1.2 Gas Flow Control 245 12A.2.1.3 Susceptor 245 12A.2.2 Chamber Cleaning 246 12A.3 Thin¿Film Material, Process, and Characterization 248 12A.3.1 Amorphous Si (äSi) TFT 248 12A.3.1.1 Silicon Nitride (SiN) 248 12A.3.1.2 Amorphous Silicon (äSi) 253 12A.3.1.3 Phosphorus¿Doped Amorphous Silicon (n+ äSi) 257 12A.3.2 Low¿Temperature Poly Silicon (LTPS) TFT 258 12A.3.2.1 Silicon Oxide (SiO) 259 12A.3.2.2 äSi Precursor Film (Dehydrogenation) 260 12A.3.3 Metal¿Oxide (MO) TFT 263 12A.3.3.1 Silicon Oxide (SiO) 265 12A.3.4 Thin¿Film Encapsulation (TFE) 269 12A.3.4.1 Barrier Layer (Silicon Nitride) 269 12A.3.4.2 Buffer Layer 271 References 271 12B Thin¿Film PECVD (Ulvac) 273Masashi Kikuchi 12B.1 Introduction 273 12B.2 Plasma of PECVD 273 12B.3 Plasma Modes and Reactor Configuration 273 12B.3.1 CCP¿Type Reactor 274 12B.3.2 Microwave¿Type Reactor 274 12B.3.3 ICP¿Type Reactor 275 12B.4 PECVD Process for...
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 352 S. |
ISBN-13: | 9781119161349 |
ISBN-10: | 1119161347 |
Sprache: | Englisch |
Einband: | Gebunden |
Redaktion: |
Souk, Jun
Morozumi, Shinji Luo, Fang-Chen Bita, Ion |
Herausgeber: | Jun Souk/Shinji Morozumi/Fang-Chen Luo et al |
Hersteller: | Wiley |
Maße: | 260 x 208 x 31 mm |
Von/Mit: | Jun Souk (u. a.) |
Erscheinungsdatum: | 24.09.2018 |
Gewicht: | 1,273 kg |
JUN SOUK, PHD is a Professor in the Department of Electronic Engineering, Hanyang University, South Korea.
SHINJI MOROZUMI, PHD is the founder and chairman of Crystage Inc., Japan.
FANG-CHEN LUO, PHD is advisor to the President and Fellow of AU Optronics, Taiwan.
ION BITA, PHD leads development of display technologies and components at Apple Inc., USA.
Fang¿Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita 1.1 Introduction 1 1.2 Historic Review of TFT¿LCD Manufacturing Technology Progress 1 1.2.1 Early Stage TFT and TFT¿Based Displays 2 1.2.2 The 1990s: Initiation of TFT¿LCD Manufacturing and Incubation of TFT¿LCD Products 2 1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4 1.2.4 The 2000s: A Golden Time for LCD¿TV Manufacturing Technology Advances 4 1.3 Analyzing the Success Factors in LCD Manufacturing 5 1.3.1 Scaling the LCD Substrate Size 7 1.3.2 Major Milestones in TFT¿LCD Manufacturing Technology 9 1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9 1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9 1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10 1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10 References 11 2 TFT Array Process Architecture and Manufacturing Process Flow 13Chiwoo Kim 2.1 Introduction 13 2.2 Material Properties and TFT Characteristics of äSi, LTPS, and Metal Oxide TFTs 15 2.2.1 äSi TFT 15 2.2.2 LTPS TFT 16 2.2.2.1 Excimer Laser Annealing (ELA) 17 2.2.3 Amorphous Oxide Semiconductor TFTs 22 2.3 äSi TFT Array Process Architecture and Process Flow 22 2.3.1 Four¿Mask Count Process Architecture for TFT¿LCDs 24 2.4 Poly¿Si TFT Architecture and Fabrication 27 2.5 Oxide Semiconductor TFT Architecture and Fabrication 30 2.6 TFT LCD Applications 32 2.7 Development of SLS¿Based System on Glass Display [1, 11, 14, 15] 33 References 35 3 Color Filter Architecture, Materials, and Process Flow 39Young Seok Choi, Musun Kwak, and Youn Sung Na 3.1 Introduction 39 3.2 Structure and Role of the Color Filter 39 3.2.1 Red, Green, and Blue (RGB) Layer 40 3.2.1.1 Color Coordinate and Color Gamut 41 3.2.2 Black Matrix 44 3.2.3 Overcoat and Transparent Electrode 45 3.2.4 Column Spacer 46 3.3 Color Filter Manufacturing Process Flow 46 3.3.1 Unit Process 46 3.3.1.1 Formation of Black Matrix 46 3.3.1.2 Formation of RGB Layer 48 3.3.1.3 Overcoat (OC) 51 3.3.1.4 Formation of ITO Electrodes 53 3.3.1.5 Column Spacer (Pattern Spacer) 53 3.3.2 Process Flow for Different LC Mode 54 3.3.2.1 Color Filter for the TN Mode 54 3.3.2.2 Color Filter for the IPS Mode 54 3.3.2.3 Color Filter for the VA Mode 55 3.4 New Color Filter Design 55 3.4.1 White Color (Four Primary Colors) Technology 55 3.4.2 Color Filter on TFT 56 References 57 4 Liquid Crystal Cell Process 59Heung¿Shik Park and Ki¿Chul Shin 4.1 Introduction 59 4.2 Liquid Crystal Cell Process 59 4.2.1 Alignment Layer Treatment 61 4.2.2 Process of Applying PI Layers 62 4.2.3 Rubbing Process 63 4.2.4 Photo¿Alignment Process 64 4.2.5 LC Filling Process 65 4.2.5.1 Vacuum Filling Method 66 4.2.5.2 End Seal Process 66 4.2.5.3 One Drop Filling (ODF) Method 67 4.2.6 Vacuum Assembly Process 68 4.2.7 Polarizer Attachment Process 69 4.3 Conclusions 70 Acknowledgments 70 References 70 5 TFT¿LCD Module and Package Process 73Chun Chang Hung 5.1 Introduction 73 5.2 Driver IC Bonding: TAB and COG 73 5.3 Introduction to Large¿Panel JI Process 74 5.3.1 COF Bonding 75 5.3.1.1 Edge Clean 75 5.3.1.2 ACF Attachment 76 5.3.1.3 COF Pre¿Bonding 77 5.3.1.4 COF Main Bonding 78 5.3.1.5 Lead Check 78 5.3.1.6 Silicone Dispensing 78 5.3.2 PCB Bonding 79 5.3.3 PCB Test 79 5.3.4 Press Heads: Long Bar or Short Bar 79 5.4 Introduction to Small¿Panel JI Process 79 5.4.1 Beveling 80 5.4.2 Panel Cleaning 80 5.4.3 Polarizer Attachment 80 5.4.4 Chip on Glass (COG) Bonding 81 5.4.5 FPC on Glass (FOG) Bonding 81 5.4.6 Optical Microscope (OM) Inspection 81 5.4.7 UV Glue Dispense 82 5.4.8 Post Bonding Inspection (PBI) 82 5.4.9 Protection Glue Dispensing 82 5.5 LCD Module Assembly 83 5.6 Aging 84 5.7 Module in Backlight or Backlight in Module 85 References 86 6 LCD Backlights 87Insun Hwang and Jae¿Hyeon Ko 6.1 Introduction 87 6.2 LED Sources 90 6.2.1 GaN Epi¿Wafer on Sapphire 92 6.2.2 LED Chip 93 6.2.3 Light Extraction 94 6.2.4 LED Package 96 6.2.5 SMT on FPCB 97 6.3 Light Guide Plate 98 6.3.1 Optical Principles of LGP 98 6.3.2 Optical Pattern Design 99 6.3.3 Manufacturing of LGP 101 6.3.3.1 Injection Molding 101 6.3.3.2 Screen Printing 102 6.3.3.3 Other Methods 103 6.4 Optical Films 104 6.4.1 Diffuser 106 6.4.2 Prism Film 107 6.4.3 Reflector 108 6.4.4 Other Films 108 6.5 Direct¿Type BLU 111 6.6 Summary 111 References 112 7 TFT Backplane and Issues for OLED 115Chiwoo Kim 7.1 Introduction 115 7.2 LTPS TFT Backplane for OLED Films 116 7.2.1 Advanced Excimer Laser Annealing (AELA) for Large¿Sized AMOLED Displays 117 7.2.2 Line¿Scan Sequential Lateral Solidification Process for AMOLED Application 120 7.3 Oxide Semiconductor TFT for OLED 122 7.3.1 Oxide TFT-Based OLED for Large¿Sized TVs 123 7.4 Best Backplane Solution for AMOLED 125 References 127 8A OLED Manufacturing Process for Mobile Application 129Jang Hyuk Kwon and Raju Lampande 8A.1 Introduction 129 8A.2 Current Status of AMOLED for Mobile Display 130 8A.2.1 Top Emission Technology 130 8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133 8A.4 Encapsulation Techniques for OLEDs 135 8A.4.1 Frit Sealing 135 8A.4.2 Thin¿Film Encapsulation 136 8A.5 Flexible OLED technology 137 8A.6 AMOLED Manufacturing Process 137 8A.7 Summary 140 References 140 8B OLED Manufacturing Process for TV Application 143Chang Wook Han and Yoon Heung Tak 8B.1 Introduction 143 8B.2 Fine Metal Mask (FMM) 144 8B.3 Manufacturing Process for White OLED and Color Filter Methods 147 8B.3.1 One¿Stacked White OLED Device 149 8B.3.2 Two¿Stacked White OLED Device 152 8B.3.3 Three¿Stacked White¿OLED Device 155 References 157 9 OLED Encapsulation Technology 159Young¿Hoon Shin 9.1 Introduction 159 9.2 Principles of OLED Encapsulation 159 9.2.1 Effect of H2O 160 9.3 Classification of Encapsulation Technologies 162 9.3.1 Edge Seal 163 9.3.2 Frit Seal 164 9.3.3 Dam and Fill 166 9.3.4 Face Seal 167 9.3.5 Thin¿Film Encapsulation (TFE) 168 9.4 Summary 170 References 170 10 Flexible OLED Manufacturing 173Woojae Lee and Jun Souk 10.1 Introduction 173 10.2 Critical Technologies in Flexible OLED Display 174 10.2.1 High¿Temperature PI Film 175 10.2.2 Encapsulation Layer 176 10.2.2.1 Thin¿Film Encapsulation (TFE) Method 176 10.2.2.2 Hyrid Encapsulation Method 177 10.2.2.3 Other Encapsulation Methods 178 10.2.2.4 Measurement of Barrier Performance 179 10.2.3 Laser Lift¿Off 180 10.2.4 Touch Sensor on F¿OLED 181 10.3 Process Flow of F¿OLED 181 10.3.1 PI Film Coating and Curing 181 10.3.2 LTPS TFT Backplane Process 183 10.3.3 OLED Deposition Process 183 10.3.4 Thin¿Film Encapsulation 185 10.3.5 Laser Lift¿Off 185 10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185 10.3.7 Touch Sensor Attach 186 10.3.8 Circular Polarizer Attach 186 10.3.9 Module Assembly (Bonding Drive IC) 186 10.4 Foldable OLED 186 10.5 Summary 188 References 189 11A Metal Lines and ITO PVD 193Hyun Eok Shin, Chang Oh Jeong, and Junho Song 11A.1 Introduction 193 11A.1.1 Basic Requirements of Metallization for Display 193 11A.1.2 Thin¿Film Deposition by Sputtering 195 11A.2 Metal Line Evolution in Past Years of TFT¿LCD 198 11A.2.1 Gate Line Metals 199 11A.2.1.1 Al and Al Alloy Electrode 199 11A.2.1.2 Cu Electrode 201 11A.2.2 Data line (Source/Drain) Metals 202 11A.2.2.1 Data Al Metal 202 11A.2.2.2 Data Cu Metal 203 11A.2.2.3 Data Chromium (Cr) Metal 203 11A.2.2.4 Molybdenum (Mo) Metal 203 11A.2.2.5 Titanium (Ti) Metal 204 11A.3 Metallization for OLED Display 205 11A.3.1 Gate Line Metals 205 11A.3.2 Source/Drain Metals 205 11A.3.3 Pixel Anode 206 11A.4 Transparent Electrode 207 References 208 11B Thin¿Film PVD: Materials, Processes, and Equipment 209Tetsuhiro Ohno 11B.1 Introduction 209 11B.2 Sputtering Method 210 11B.3 Evolution of Sputtering Equipment for FPD Devices 212 11B.3.1 Cluster Tool for Gen 2 Size 212 11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213 11B.3.3 Vertical Cluster Tool for Gen 8 Size 213 11B.4 Evolution of Sputtering Cathode 215 11B.4.1 Cathode Structure Evolution 215 11B.4.2 Dynamic Multi Cathode for LTPS 217 11B.4.3 Cathode Selection Strategy 217 11B.5 Transparent Oxide Semiconductor (TOS) Thin¿Film Deposition Technology 218 11B.5.1 Deposition Equipment for TOS¿TFT 218 11B.5.2 New Cathode Structure for TOS¿TFT 219 11B.6 Metallization Materials and Deposition Technology 221 References 223 11C Thin¿Film PVD (Rotary Target) 225 Marcus Bender 11C. 1 Introduction 225 11C.2 Source Technology 227 11C.2.1 Planar Cathodes 227 11C.2.2 Rotary Cathodes 229 11C.2.3 Rotary Cathode Array 230 11C.3 Materials, Processes, and Characterization 232 11C.3.1 Introduction 232 11C.3.2 Backplane Metallization 232 11C.3.3 Layers for Metal¿Oxide TFTs 234 11C.3.4 Transparent Electrodes 236 11C.3.5 Adding Touch Functionality and Improving End¿User Experience 238 References 239 12A Thin¿Film PECVD (AKT) 241Tae Kyung Won, Soo Young Choi, and John M. White 12A.1 Introduction 241 12A.2 Process Chamber Technology 243 12A.2.1 Electrode Design 243 12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243 12A.2.1.2 Gas Flow Control 245 12A.2.1.3 Susceptor 245 12A.2.2 Chamber Cleaning 246 12A.3 Thin¿Film Material, Process, and Characterization 248 12A.3.1 Amorphous Si (äSi) TFT 248 12A.3.1.1 Silicon Nitride (SiN) 248 12A.3.1.2 Amorphous Silicon (äSi) 253 12A.3.1.3 Phosphorus¿Doped Amorphous Silicon (n+ äSi) 257 12A.3.2 Low¿Temperature Poly Silicon (LTPS) TFT 258 12A.3.2.1 Silicon Oxide (SiO) 259 12A.3.2.2 äSi Precursor Film (Dehydrogenation) 260 12A.3.3 Metal¿Oxide (MO) TFT 263 12A.3.3.1 Silicon Oxide (SiO) 265 12A.3.4 Thin¿Film Encapsulation (TFE) 269 12A.3.4.1 Barrier Layer (Silicon Nitride) 269 12A.3.4.2 Buffer Layer 271 References 271 12B Thin¿Film PECVD (Ulvac) 273Masashi Kikuchi 12B.1 Introduction 273 12B.2 Plasma of PECVD 273 12B.3 Plasma Modes and Reactor Configuration 273 12B.3.1 CCP¿Type Reactor 274 12B.3.2 Microwave¿Type Reactor 274 12B.3.3 ICP¿Type Reactor 275 12B.4 PECVD Process for...
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 352 S. |
ISBN-13: | 9781119161349 |
ISBN-10: | 1119161347 |
Sprache: | Englisch |
Einband: | Gebunden |
Redaktion: |
Souk, Jun
Morozumi, Shinji Luo, Fang-Chen Bita, Ion |
Herausgeber: | Jun Souk/Shinji Morozumi/Fang-Chen Luo et al |
Hersteller: | Wiley |
Maße: | 260 x 208 x 31 mm |
Von/Mit: | Jun Souk (u. a.) |
Erscheinungsdatum: | 24.09.2018 |
Gewicht: | 1,273 kg |