Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
67,40 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities.
Purchase of the print or Kindle book includes a free eBook in PDF [...] FeaturesDiscover best practices for using Python and R in Power BI by implementing non-trivial code
Enrich your Power BI dashboards using external APIs and machine learning models
Create any visualization, as complex as you want, using Python and R scripts
Book Description
The latest edition of this book delves deeper into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond laptop RAM, employing parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server External Languages to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the grammar of graphics in both R and Python.
This PowerBI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. Next, you'll learn to Safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of data sets by plotting multiple visual graphs in the process of building a machine-learning model. The book will guide you to Utilize external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis.
You'll also be able to reinforce learning with questions at the end of each [...] you will learnConfigure optimal integration of Python and R with Power BI
Perform complex data manipulations not possible by default in Power BI
Boost Power BI logging and loading large datasets
Extract insights from your data using algorithms like linear optimization
Calculate string distances and learn how to use them for probabilistic fuzzy matching
Handle outliers and missing values for multivariate and time-series data
Apply Exploratory Data Analysis in Power BI with R
Learn to use Grammar of Graphics in Python
Who this book is for
This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be [...] of ContentsWhere and How to Use R and Python Scripts in Power BI
Configuring R with Power BI
Configuring Python with Power BI
Solving Common Issues When Using Python and R in Power BI
Importing Unhandled Data Objects
Using Regular Expressions in Power BI
Anonymizing and Pseudonymizing your Data in Power BI
Logging Data from Power BI to External Sources
Loading Large Datasets Also Beyond the Available RAM in Power BI
Optimizing the Loading Time of Referenced Queries in Power BI
Calling External APIs To Enrich Your Data
Calculating Columns Using Complex Algorithms: Distances
Calculating Columns Using Complex Algorithms: Fuzzy Matching
Calculating Columns Using Complex Algorithms: Optimization Problems
Adding Statistics Insights: Associations
Adding Statistics Insights: Outliers and Missing Values
(N.B. Please use the Look Inside option to see further chapters)
Purchase of the print or Kindle book includes a free eBook in PDF [...] FeaturesDiscover best practices for using Python and R in Power BI by implementing non-trivial code
Enrich your Power BI dashboards using external APIs and machine learning models
Create any visualization, as complex as you want, using Python and R scripts
Book Description
The latest edition of this book delves deeper into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond laptop RAM, employing parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server External Languages to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the grammar of graphics in both R and Python.
This PowerBI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. Next, you'll learn to Safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of data sets by plotting multiple visual graphs in the process of building a machine-learning model. The book will guide you to Utilize external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis.
You'll also be able to reinforce learning with questions at the end of each [...] you will learnConfigure optimal integration of Python and R with Power BI
Perform complex data manipulations not possible by default in Power BI
Boost Power BI logging and loading large datasets
Extract insights from your data using algorithms like linear optimization
Calculate string distances and learn how to use them for probabilistic fuzzy matching
Handle outliers and missing values for multivariate and time-series data
Apply Exploratory Data Analysis in Power BI with R
Learn to use Grammar of Graphics in Python
Who this book is for
This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be [...] of ContentsWhere and How to Use R and Python Scripts in Power BI
Configuring R with Power BI
Configuring Python with Power BI
Solving Common Issues When Using Python and R in Power BI
Importing Unhandled Data Objects
Using Regular Expressions in Power BI
Anonymizing and Pseudonymizing your Data in Power BI
Logging Data from Power BI to External Sources
Loading Large Datasets Also Beyond the Available RAM in Power BI
Optimizing the Loading Time of Referenced Queries in Power BI
Calling External APIs To Enrich Your Data
Calculating Columns Using Complex Algorithms: Distances
Calculating Columns Using Complex Algorithms: Fuzzy Matching
Calculating Columns Using Complex Algorithms: Optimization Problems
Adding Statistics Insights: Associations
Adding Statistics Insights: Outliers and Missing Values
(N.B. Please use the Look Inside option to see further chapters)
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities.
Purchase of the print or Kindle book includes a free eBook in PDF [...] FeaturesDiscover best practices for using Python and R in Power BI by implementing non-trivial code
Enrich your Power BI dashboards using external APIs and machine learning models
Create any visualization, as complex as you want, using Python and R scripts
Book Description
The latest edition of this book delves deeper into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond laptop RAM, employing parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server External Languages to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the grammar of graphics in both R and Python.
This PowerBI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. Next, you'll learn to Safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of data sets by plotting multiple visual graphs in the process of building a machine-learning model. The book will guide you to Utilize external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis.
You'll also be able to reinforce learning with questions at the end of each [...] you will learnConfigure optimal integration of Python and R with Power BI
Perform complex data manipulations not possible by default in Power BI
Boost Power BI logging and loading large datasets
Extract insights from your data using algorithms like linear optimization
Calculate string distances and learn how to use them for probabilistic fuzzy matching
Handle outliers and missing values for multivariate and time-series data
Apply Exploratory Data Analysis in Power BI with R
Learn to use Grammar of Graphics in Python
Who this book is for
This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be [...] of ContentsWhere and How to Use R and Python Scripts in Power BI
Configuring R with Power BI
Configuring Python with Power BI
Solving Common Issues When Using Python and R in Power BI
Importing Unhandled Data Objects
Using Regular Expressions in Power BI
Anonymizing and Pseudonymizing your Data in Power BI
Logging Data from Power BI to External Sources
Loading Large Datasets Also Beyond the Available RAM in Power BI
Optimizing the Loading Time of Referenced Queries in Power BI
Calling External APIs To Enrich Your Data
Calculating Columns Using Complex Algorithms: Distances
Calculating Columns Using Complex Algorithms: Fuzzy Matching
Calculating Columns Using Complex Algorithms: Optimization Problems
Adding Statistics Insights: Associations
Adding Statistics Insights: Outliers and Missing Values
(N.B. Please use the Look Inside option to see further chapters)
Purchase of the print or Kindle book includes a free eBook in PDF [...] FeaturesDiscover best practices for using Python and R in Power BI by implementing non-trivial code
Enrich your Power BI dashboards using external APIs and machine learning models
Create any visualization, as complex as you want, using Python and R scripts
Book Description
The latest edition of this book delves deeper into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond laptop RAM, employing parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server External Languages to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the grammar of graphics in both R and Python.
This PowerBI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. Next, you'll learn to Safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of data sets by plotting multiple visual graphs in the process of building a machine-learning model. The book will guide you to Utilize external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis.
You'll also be able to reinforce learning with questions at the end of each [...] you will learnConfigure optimal integration of Python and R with Power BI
Perform complex data manipulations not possible by default in Power BI
Boost Power BI logging and loading large datasets
Extract insights from your data using algorithms like linear optimization
Calculate string distances and learn how to use them for probabilistic fuzzy matching
Handle outliers and missing values for multivariate and time-series data
Apply Exploratory Data Analysis in Power BI with R
Learn to use Grammar of Graphics in Python
Who this book is for
This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be [...] of ContentsWhere and How to Use R and Python Scripts in Power BI
Configuring R with Power BI
Configuring Python with Power BI
Solving Common Issues When Using Python and R in Power BI
Importing Unhandled Data Objects
Using Regular Expressions in Power BI
Anonymizing and Pseudonymizing your Data in Power BI
Logging Data from Power BI to External Sources
Loading Large Datasets Also Beyond the Available RAM in Power BI
Optimizing the Loading Time of Referenced Queries in Power BI
Calling External APIs To Enrich Your Data
Calculating Columns Using Complex Algorithms: Distances
Calculating Columns Using Complex Algorithms: Fuzzy Matching
Calculating Columns Using Complex Algorithms: Optimization Problems
Adding Statistics Insights: Associations
Adding Statistics Insights: Outliers and Missing Values
(N.B. Please use the Look Inside option to see further chapters)
Über den Autor
Luca Zavarella is certified as an Azure Data Scientist Associate and is also a Microsoft MVP for artificial intelligence. He graduated in computer engineering at the Faculty of Engineering of L'Aquila University, and he has more than 10 years of experience working on the Microsoft Data Platform. He started his journey as a T-SQL developer on SQL Server 2000 and 2005. He then focused on all the Microsoft Business Intelligence stack (SSIS, SSAS, SSRS), deepening data warehousing techniques. Recently, he has been dedicating himself to the world of advanced analytics and data science. He also graduated with honors in classical piano at the Conservatory "Alfredo Casella" in L'Aquila.
Details
Erscheinungsjahr: | 2024 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781837639533 |
ISBN-10: | 1837639531 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Zavarella, Luca |
Auflage: | 2. Auflage |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 44 mm |
Von/Mit: | Luca Zavarella |
Erscheinungsdatum: | 29.03.2024 |
Gewicht: | 1,489 kg |
Über den Autor
Luca Zavarella is certified as an Azure Data Scientist Associate and is also a Microsoft MVP for artificial intelligence. He graduated in computer engineering at the Faculty of Engineering of L'Aquila University, and he has more than 10 years of experience working on the Microsoft Data Platform. He started his journey as a T-SQL developer on SQL Server 2000 and 2005. He then focused on all the Microsoft Business Intelligence stack (SSIS, SSAS, SSRS), deepening data warehousing techniques. Recently, he has been dedicating himself to the world of advanced analytics and data science. He also graduated with honors in classical piano at the Conservatory "Alfredo Casella" in L'Aquila.
Details
Erscheinungsjahr: | 2024 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781837639533 |
ISBN-10: | 1837639531 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Zavarella, Luca |
Auflage: | 2. Auflage |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 44 mm |
Von/Mit: | Luca Zavarella |
Erscheinungsdatum: | 29.03.2024 |
Gewicht: | 1,489 kg |
Warnhinweis