Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Essential Mathematics for Economic Analysis
Taschenbuch von Knut Sydsaeter (u. a.)
Sprache: Englisch

98,80 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Preface

I PRELIMINARIES

  1. Essentials of Logic and Set Theory
    • Essentials of Set Theory
    • Essentials of Logic
    • Mathematical Proofs
    • Mathematical Induction
    Review Exercises
  2. Algebra
    • The Real Numbers
    • Integer Powers
    • Rules of Algebra
    • Fractions
    • Fractional Powers
    • Inequalities
    • Intervals and Absolute Values
    • Sign Diagrams
    • Summation Notation
    • Rules for Sums
    • Newton's Binomial Formula
    • Double Sums
    Review Exercises
  3. Solving Equations
    • Solving Equations
    • Equations and Their Parameters
    • Quadratic Equations
    • Some Nonlinear Equations
    • Using Implication Arrows
    • Two Linear Equations in Two Unknowns
    Review Exercises
  4. Functions of One Variable
    • Introduction
    • Definitions
    • Graphs of Functions
    • Linear Functions
    • Linear Models
    • Quadratic Functions
    • Polynomials
    • Power Functions
    • Exponential Functions
    • Logarithmic Functions
    Review Exercises
  5. Properties of Functions
    • Shifting Graphs
    • New Functions From Old
    • Inverse Functions
    • Graphs of Equations
    • Distance in The Plane
    • General Functions
    Review Exercises


II SINGLE-VARIABLE CALCULUS

Differentiation
  • Slopes of Curves
  • Tangents and Derivatives
  • Increasing and Decreasing Functions
  • Economic Applications
  • A Brief Introduction to Limits
  • Simple Rules for Differentiation
  • Sums, Products, and Quotients
  • The Chain Rule
  • Higher-Order Derivatives
  • Exponential Functions
  • Logarithmic Functions
Review ExercisesDerivatives in Use
  • Implicit Differentiation
  • Economic Examples
  • The Inverse Function Theorem
  • Linear Approximations
  • Polynomial Approximations
  • Taylor's Formula
  • Elasticities
  • Continuity
  • More on Limits
  • The Intermediate Value Theorem
  • Infinite Sequences
  • L'H�pital's Rule Review Exercises
Review ExercisesConcave and Convex Functions
  • Intuition
  • Definitions
  • General Properties
  • First Derivative Tests
  • Second Derivative Tests
  • Inflection Points
Review ExercisesOptimization
  • Extreme Points
  • Simple Tests for Extreme Points
  • Economic Examples
  • The Extreme and Mean Value Theorems
  • Further Economic Examples
  • Local Extreme Points
Review ExercisesIntegration
  • Indefinite Integrals
  • Area and Definite Integrals
  • Properties of Definite Integrals
  • Economic Applications
  • Integration by Parts
  • Integration by Substitution
  • Infinite Intervals of Integration
Review ExercisesTopics in Finance and Dynamics
  • Interest Periods and Effective Rates
  • Continuous Compounding
  • Present Value
  • Geometric Series
  • Total Present Value
  • Mortgage Repayments
  • Internal Rate of Return
  • A Glimpse at Difference Equations
  • Essentials of Differential Equations
  • Separable and Linear Differential Equations
Review Exercises III MULTI-VARIABLE ALGEBRAMatrix Algebra
  • Matrices and Vectors
  • Systems of Linear Equations
  • Matrix Addition
  • Algebra of Vectors
  • Matrix Multiplication
  • Rules for Matrix Multiplication
  • The Transpose
  • Gaussian Elimination
  • Geometric Interpretation of Vectors
  • Lines and Planes
Review ExercisesDeterminants, Inverses, and Quadratic Forms
  • Determinants of Order 2
  • Determinants of Order 3
  • Determinants in General
  • Basic Rules for Determinants
  • Expansion by Cofactors
  • The Inverse of a Matrix
  • A General Formula for The Inverse
  • Cramer's Rule
  • The Leontief Mode
  • Eigenvalues and Eigenvectors
  • Diagonalization
  • Quadratic Forms
Review Exercises

IV MULTI-VARIABLE CALCULUS

Multivariable Functions
  • Functions of Two Variables
  • Partial Derivatives with Two Variables
  • Geometric Representation
  • Surfaces and Distance
  • Functions of More Variables
  • Partial Derivatives with More Variables
  • Convex Sets
  • Concave and Convex Functions
  • Economic Applications
  • Partial Elasticities
Review ExercisesPartial Derivatives in Use
  • A Simple Chain Rule
  • Chain Rules for Many Variables
  • Implicit Differentiation Along A Level Curve
  • Level Surfaces
  • Elasticity of Substitution
  • Homogeneous Functions of Two Variables
  • Homogeneous and Homothetic Functions
  • Linear Approximations
  • Differentials
  • Systems of Equations
  • Differentiating Systems of Equations
Review ExercisesMultiple Integrals
  • Double Integrals Over Finite Rectangles
  • Infinite Rectangles of Integration
  • Discontinuous Integrands and Other Extensions
  • Integration Over Many Variables
Review Exercises

V MULTI-VARIABLE OPTIMIZATION

Unconstrained Optimization
  • Two Choice Variables: Necessary Conditions
  • Two Choice Variables: Sufficient Conditions
  • Local Extreme Points
  • Linear Models with Quadratic Objectives
  • The Extreme Value Theorem
  • Functions of More Variables
  • Comparative Statics and the Envelope Theorem
Review ExercisesEquality Constraints
  • The Lagrange Multiplier Method
  • Interpreting the Lagrange Multiplier
  • Multiple Solution Candidates
  • Why Does the Lagrange Multiplier Method Work?
  • Sufficient Conditions
  • Additional Variables and Constraints
  • Comparative Statics
Review ExercisesLinear Programming
  • A Graphical Approach
  • Introduction to Duality Theory
  • The Duality Theorem
  • A General Economic Interpretation
  • Complementary Slackness
Review ExercisesNonlinear Programming
  • Two Variables and One Constraint
  • Many Variables and Inequality Constraints
  • Nonnegativity Constraints
Review Exercises AppendixGeometry The Greek Alphabet Bibliography Solutions to the Exercises Index Publisher's Acknowledgments
Preface

I PRELIMINARIES

  1. Essentials of Logic and Set Theory
    • Essentials of Set Theory
    • Essentials of Logic
    • Mathematical Proofs
    • Mathematical Induction
    Review Exercises
  2. Algebra
    • The Real Numbers
    • Integer Powers
    • Rules of Algebra
    • Fractions
    • Fractional Powers
    • Inequalities
    • Intervals and Absolute Values
    • Sign Diagrams
    • Summation Notation
    • Rules for Sums
    • Newton's Binomial Formula
    • Double Sums
    Review Exercises
  3. Solving Equations
    • Solving Equations
    • Equations and Their Parameters
    • Quadratic Equations
    • Some Nonlinear Equations
    • Using Implication Arrows
    • Two Linear Equations in Two Unknowns
    Review Exercises
  4. Functions of One Variable
    • Introduction
    • Definitions
    • Graphs of Functions
    • Linear Functions
    • Linear Models
    • Quadratic Functions
    • Polynomials
    • Power Functions
    • Exponential Functions
    • Logarithmic Functions
    Review Exercises
  5. Properties of Functions
    • Shifting Graphs
    • New Functions From Old
    • Inverse Functions
    • Graphs of Equations
    • Distance in The Plane
    • General Functions
    Review Exercises


II SINGLE-VARIABLE CALCULUS

Differentiation
  • Slopes of Curves
  • Tangents and Derivatives
  • Increasing and Decreasing Functions
  • Economic Applications
  • A Brief Introduction to Limits
  • Simple Rules for Differentiation
  • Sums, Products, and Quotients
  • The Chain Rule
  • Higher-Order Derivatives
  • Exponential Functions
  • Logarithmic Functions
Review ExercisesDerivatives in Use
  • Implicit Differentiation
  • Economic Examples
  • The Inverse Function Theorem
  • Linear Approximations
  • Polynomial Approximations
  • Taylor's Formula
  • Elasticities
  • Continuity
  • More on Limits
  • The Intermediate Value Theorem
  • Infinite Sequences
  • L'H�pital's Rule Review Exercises
Review ExercisesConcave and Convex Functions
  • Intuition
  • Definitions
  • General Properties
  • First Derivative Tests
  • Second Derivative Tests
  • Inflection Points
Review ExercisesOptimization
  • Extreme Points
  • Simple Tests for Extreme Points
  • Economic Examples
  • The Extreme and Mean Value Theorems
  • Further Economic Examples
  • Local Extreme Points
Review ExercisesIntegration
  • Indefinite Integrals
  • Area and Definite Integrals
  • Properties of Definite Integrals
  • Economic Applications
  • Integration by Parts
  • Integration by Substitution
  • Infinite Intervals of Integration
Review ExercisesTopics in Finance and Dynamics
  • Interest Periods and Effective Rates
  • Continuous Compounding
  • Present Value
  • Geometric Series
  • Total Present Value
  • Mortgage Repayments
  • Internal Rate of Return
  • A Glimpse at Difference Equations
  • Essentials of Differential Equations
  • Separable and Linear Differential Equations
Review Exercises III MULTI-VARIABLE ALGEBRAMatrix Algebra
  • Matrices and Vectors
  • Systems of Linear Equations
  • Matrix Addition
  • Algebra of Vectors
  • Matrix Multiplication
  • Rules for Matrix Multiplication
  • The Transpose
  • Gaussian Elimination
  • Geometric Interpretation of Vectors
  • Lines and Planes
Review ExercisesDeterminants, Inverses, and Quadratic Forms
  • Determinants of Order 2
  • Determinants of Order 3
  • Determinants in General
  • Basic Rules for Determinants
  • Expansion by Cofactors
  • The Inverse of a Matrix
  • A General Formula for The Inverse
  • Cramer's Rule
  • The Leontief Mode
  • Eigenvalues and Eigenvectors
  • Diagonalization
  • Quadratic Forms
Review Exercises

IV MULTI-VARIABLE CALCULUS

Multivariable Functions
  • Functions of Two Variables
  • Partial Derivatives with Two Variables
  • Geometric Representation
  • Surfaces and Distance
  • Functions of More Variables
  • Partial Derivatives with More Variables
  • Convex Sets
  • Concave and Convex Functions
  • Economic Applications
  • Partial Elasticities
Review ExercisesPartial Derivatives in Use
  • A Simple Chain Rule
  • Chain Rules for Many Variables
  • Implicit Differentiation Along A Level Curve
  • Level Surfaces
  • Elasticity of Substitution
  • Homogeneous Functions of Two Variables
  • Homogeneous and Homothetic Functions
  • Linear Approximations
  • Differentials
  • Systems of Equations
  • Differentiating Systems of Equations
Review ExercisesMultiple Integrals
  • Double Integrals Over Finite Rectangles
  • Infinite Rectangles of Integration
  • Discontinuous Integrands and Other Extensions
  • Integration Over Many Variables
Review Exercises

V MULTI-VARIABLE OPTIMIZATION

Unconstrained Optimization
  • Two Choice Variables: Necessary Conditions
  • Two Choice Variables: Sufficient Conditions
  • Local Extreme Points
  • Linear Models with Quadratic Objectives
  • The Extreme Value Theorem
  • Functions of More Variables
  • Comparative Statics and the Envelope Theorem
Review ExercisesEquality Constraints
  • The Lagrange Multiplier Method
  • Interpreting the Lagrange Multiplier
  • Multiple Solution Candidates
  • Why Does the Lagrange Multiplier Method Work?
  • Sufficient Conditions
  • Additional Variables and Constraints
  • Comparative Statics
Review ExercisesLinear Programming
  • A Graphical Approach
  • Introduction to Duality Theory
  • The Duality Theorem
  • A General Economic Interpretation
  • Complementary Slackness
Review ExercisesNonlinear Programming
  • Two Variables and One Constraint
  • Many Variables and Inequality Constraints
  • Nonnegativity Constraints
Review Exercises AppendixGeometry The Greek Alphabet Bibliography Solutions to the Exercises Index Publisher's Acknowledgments
Details
Erscheinungsjahr: 2021
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292359281
ISBN-10: 1292359285
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Sydsaeter, Knut
Hammond, Peter
Strom, Arne
Carvajal, Andres
Auflage: 6 ed
Hersteller: Pearson Education Limited
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 246 x 189 x 43 mm
Von/Mit: Knut Sydsaeter (u. a.)
Erscheinungsdatum: 22.04.2021
Gewicht: 1,633 kg
Artikel-ID: 119698475
Details
Erscheinungsjahr: 2021
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292359281
ISBN-10: 1292359285
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Sydsaeter, Knut
Hammond, Peter
Strom, Arne
Carvajal, Andres
Auflage: 6 ed
Hersteller: Pearson Education Limited
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 246 x 189 x 43 mm
Von/Mit: Knut Sydsaeter (u. a.)
Erscheinungsdatum: 22.04.2021
Gewicht: 1,633 kg
Artikel-ID: 119698475
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte