Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Ensemble Machine Learning
Methods and Applications
Taschenbuch von Yunqian Ma (u. a.)
Sprache: Englisch

204,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed ¿ensemble learning¿ by researchers in computational intelligence and machine learning, it is known to improve a decision system¿s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as ¿boosting¿ and ¿random forest¿ facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed ¿ensemble learning¿ by researchers in computational intelligence and machine learning, it is known to improve a decision system¿s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as ¿boosting¿ and ¿random forest¿ facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Über den Autor
Dr. Zhang works for Microsoft. Dr. Ma works for Honeywell.
Zusammenfassung

Covers all existing methods developed for ensemble learning

Presents overview and in-depth knowledge about ensemble learning

Discusses the pros and cons of various ensemble learning methods

Demonstrate how ensemble learning can be used with real world applications

Inhaltsverzeichnis
Introduction of Ensemble Learning.- Boosting Algorithms: Theory, Methods and Applications.- On Boosting Nonparametric Learners.- Super Learning.- Random Forest.- Ensemble Learning by Negative Correlation Learning.- Ensemble Nystrom Method.- Object Detection.- Ensemble Learning for Activity Recognition.- Ensemble Learning in Medical Applications.- Random Forest for Bioinformatics.
Details
Erscheinungsjahr: 2014
Fachbereich: Technik allgemein
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
332 S.
ISBN-13: 9781489988171
ISBN-10: 1489988173
Sprache: Englisch
Einband: Kartoniert / Broschiert
Redaktion: Ma, Yunqian
Zhang, Cha
Herausgeber: Cha Zhang/Yunqian Ma
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 19 mm
Von/Mit: Yunqian Ma (u. a.)
Erscheinungsdatum: 12.04.2014
Gewicht: 0,517 kg
Artikel-ID: 105337642
Über den Autor
Dr. Zhang works for Microsoft. Dr. Ma works for Honeywell.
Zusammenfassung

Covers all existing methods developed for ensemble learning

Presents overview and in-depth knowledge about ensemble learning

Discusses the pros and cons of various ensemble learning methods

Demonstrate how ensemble learning can be used with real world applications

Inhaltsverzeichnis
Introduction of Ensemble Learning.- Boosting Algorithms: Theory, Methods and Applications.- On Boosting Nonparametric Learners.- Super Learning.- Random Forest.- Ensemble Learning by Negative Correlation Learning.- Ensemble Nystrom Method.- Object Detection.- Ensemble Learning for Activity Recognition.- Ensemble Learning in Medical Applications.- Random Forest for Bioinformatics.
Details
Erscheinungsjahr: 2014
Fachbereich: Technik allgemein
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
332 S.
ISBN-13: 9781489988171
ISBN-10: 1489988173
Sprache: Englisch
Einband: Kartoniert / Broschiert
Redaktion: Ma, Yunqian
Zhang, Cha
Herausgeber: Cha Zhang/Yunqian Ma
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 19 mm
Von/Mit: Yunqian Ma (u. a.)
Erscheinungsdatum: 12.04.2014
Gewicht: 0,517 kg
Artikel-ID: 105337642
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte