98,45 €*
-8 % UVP 106,99 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Modern medical computer files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required
This is the first publication of clinical trials that have been systematically analyzed with machine learning. In addition, all of the machine learning analyses were tested against traditional analyses. Step by step statistics for self-assessments are included
The authors conclude, that machine learning is often more informative, and provides better sensitivities of testing than traditional analytic methods do
Modern medical computer files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required
This is the first publication of clinical trials that have been systematically analyzed with machine learning. In addition, all of the machine learning analyses were tested against traditional analyses. Step by step statistics for self-assessments are included
The authors conclude, that machine learning is often more informative, and provides better sensitivities of testing than traditional analytic methods do
It shows, for the first time, that machine learning methodologies can be used for assessing efficacy data of controlled clinical trials
It confirms, that machine learning methodologies provide better sensitivity of testing
It confirms, that machine learning methodologies are more informative
Preface.- Traditional and Machine-Learning Methods for Efficacy Analysis.- Optimal-Scaling for Efficacy Analysis.- Ratio-Statistic for Efficacy Analysis.- Ratio-Statistic for Efficacy Analysis.- Complex-Samples for Efficacy Analysis.- Bayesian-Networks for Efficacy Analysis.- Evolutionary-Operations for Efficacy Analysis.- Automatic-Newton-Modeling for Efficacy Analysis.- High-Risk-Bins for Efficacy Analysis.- Balanced-Iterative-Reducing-Hierarchy for Efficacy Analysis.- Cluster-Analysis for Efficacy Analysis.- Multidimensional-Scaling for Efficacy Analysis.- Binary Decision-Trees for Efficacy Analysis.- Continuous Decision-Trees for Efficacy Analysis.- Automatic-Data-Mining for Efficacy Analysis.- Support-Vector-Machines for Efficacy Analysis.- Neural-Networks for Efficacy Analysis.- Ensembled-Accuracies for Efficacy Analysis.- Ensembled-Correlations for Efficacy Analysis.- Gamma-Distributionsfor Efficacy Analysis.- Validation with Big Data, a Big Issue.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Therapie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: |
xi
304 S. 251 s/w Illustr. 44 farbige Illustr. 304 p. 295 illus. 44 illus. in color. |
ISBN-13: | 9783030199173 |
ISBN-10: | 3030199177 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Zwinderman, Aeilko H.
Cleophas, Ton J. |
Auflage: | 1st edition 2019 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 22 mm |
Von/Mit: | Aeilko H. Zwinderman (u. a.) |
Erscheinungsdatum: | 25.09.2019 |
Gewicht: | 0,698 kg |
It shows, for the first time, that machine learning methodologies can be used for assessing efficacy data of controlled clinical trials
It confirms, that machine learning methodologies provide better sensitivity of testing
It confirms, that machine learning methodologies are more informative
Preface.- Traditional and Machine-Learning Methods for Efficacy Analysis.- Optimal-Scaling for Efficacy Analysis.- Ratio-Statistic for Efficacy Analysis.- Ratio-Statistic for Efficacy Analysis.- Complex-Samples for Efficacy Analysis.- Bayesian-Networks for Efficacy Analysis.- Evolutionary-Operations for Efficacy Analysis.- Automatic-Newton-Modeling for Efficacy Analysis.- High-Risk-Bins for Efficacy Analysis.- Balanced-Iterative-Reducing-Hierarchy for Efficacy Analysis.- Cluster-Analysis for Efficacy Analysis.- Multidimensional-Scaling for Efficacy Analysis.- Binary Decision-Trees for Efficacy Analysis.- Continuous Decision-Trees for Efficacy Analysis.- Automatic-Data-Mining for Efficacy Analysis.- Support-Vector-Machines for Efficacy Analysis.- Neural-Networks for Efficacy Analysis.- Ensembled-Accuracies for Efficacy Analysis.- Ensembled-Correlations for Efficacy Analysis.- Gamma-Distributionsfor Efficacy Analysis.- Validation with Big Data, a Big Issue.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Therapie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: |
xi
304 S. 251 s/w Illustr. 44 farbige Illustr. 304 p. 295 illus. 44 illus. in color. |
ISBN-13: | 9783030199173 |
ISBN-10: | 3030199177 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Zwinderman, Aeilko H.
Cleophas, Ton J. |
Auflage: | 1st edition 2019 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 22 mm |
Von/Mit: | Aeilko H. Zwinderman (u. a.) |
Erscheinungsdatum: | 25.09.2019 |
Gewicht: | 0,698 kg |