Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection.

The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.
Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection.

The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.
Über den Autor

Harry Joe

Inhaltsverzeichnis

Introduction. Basics: Dependence, Tail Behavior, and Asymmetries. Copula Construction Methods. Parametric Copula Families and Properties. Inference, Diagnostics, and Model Selection. Computing and Algorithms. Applications and Data Examples. Theorems for Properties of Copulas. Appendix. Index.

Details
Erscheinungsjahr: 2014
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781466583221
ISBN-10: 1466583223
Sprache: Englisch
Einband: Gebunden
Autor: Joe, Harry
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 30 mm
Von/Mit: Harry Joe
Erscheinungsdatum: 26.06.2014
Gewicht: 1,093 kg
Artikel-ID: 127473058

Ähnliche Produkte

Taschenbuch