Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
65,20 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.
Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras
Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.
Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning
Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras
Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.
Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning
Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.
Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras
Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.
Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning
Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras
Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.
Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning
Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Über den Autor
Antonio Gulli has a passion for establishing and managing global technological talent for innovation and execution. His core expertise is in cloud computing, deep learning, and search engines. Currently, Antonio works for Google in the Cloud Office of the CTO in Zurich, working on Search, Cloud Infra, Sovereignty, and Conversational AI.
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781787128422 |
ISBN-10: | 1787128423 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Gulli, Antonio
Pal, Sujit |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 18 mm |
Von/Mit: | Antonio Gulli (u. a.) |
Erscheinungsdatum: | 28.04.2017 |
Gewicht: | 0,597 kg |
Über den Autor
Antonio Gulli has a passion for establishing and managing global technological talent for innovation and execution. His core expertise is in cloud computing, deep learning, and search engines. Currently, Antonio works for Google in the Cloud Office of the CTO in Zurich, working on Search, Cloud Infra, Sovereignty, and Conversational AI.
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781787128422 |
ISBN-10: | 1787128423 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Gulli, Antonio
Pal, Sujit |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 18 mm |
Von/Mit: | Antonio Gulli (u. a.) |
Erscheinungsdatum: | 28.04.2017 |
Gewicht: | 0,597 kg |
Sicherheitshinweis