171,19 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques
Presents a systematic description of most recent research advances in data-driven evolutionary optimization, including surrogate-assisted single-, multi-, and many-objective optimization
Introduces various intuitive and mathematical surrogate management strategies, such as the trust region method and acquisition functions in Bayesian optimization
Provides applications of data-driven optimization to engineering design, automation of process industry, health care, and automated machine learning
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Technik allgemein |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Studies in Computational Intelligence |
Inhalt: |
xxv
393 S. 83 s/w Illustr. 76 farbige Illustr. 393 p. 159 illus. 76 illus. in color. |
ISBN-13: | 9783030746421 |
ISBN-10: | 3030746429 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Jin, Yaochu
Sun, Chaoli Wang, Handing |
Auflage: | 1st ed. 2021 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Studies in Computational Intelligence |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Yaochu Jin (u. a.) |
Erscheinungsdatum: | 30.06.2022 |
Gewicht: | 0,633 kg |
Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques
Presents a systematic description of most recent research advances in data-driven evolutionary optimization, including surrogate-assisted single-, multi-, and many-objective optimization
Introduces various intuitive and mathematical surrogate management strategies, such as the trust region method and acquisition functions in Bayesian optimization
Provides applications of data-driven optimization to engineering design, automation of process industry, health care, and automated machine learning
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Technik allgemein |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Studies in Computational Intelligence |
Inhalt: |
xxv
393 S. 83 s/w Illustr. 76 farbige Illustr. 393 p. 159 illus. 76 illus. in color. |
ISBN-13: | 9783030746421 |
ISBN-10: | 3030746429 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Jin, Yaochu
Sun, Chaoli Wang, Handing |
Auflage: | 1st ed. 2021 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Studies in Computational Intelligence |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Yaochu Jin (u. a.) |
Erscheinungsdatum: | 30.06.2022 |
Gewicht: | 0,633 kg |