Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Data Analysis Using SQL and Excel
Taschenbuch von Gordon S Linoff
Sprache: Englisch

55,90 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung

Learn to perform sophisticated data analysis using SQL and Excel

SQL is the essential language for querying databases, and Excel is the most popular tool for data presentation and analysis. Combined, they create a powerful, accessible tool for business data analysis. Many important types of analysis do not require complex and expensive data mining tools. The answers are on your desktop.

This no-nonsense guide, written by a leading expert on business data mining, shows you how to design and perform sophisticated data analysis using SQL and Excel. The highly regarded first edition has been revised to cover the newest enhancements to SQL and Excel, including new techniques and real-world examples. This edition features the up-to-date information business managers and data analysts need.

The book begins with the basics of SQL for data mining, Excel to present results, and simple ideas from statistics to understand your data. Core analytic techniques are explained as you learn to run them on real data using Excel and SQL. The chapters progress from basic queries to increasingly detailed applications as you learn why and when to perform specific types of analysis, how to design and perform them, and powerful ways of presenting the results. Each step explains the business context, the technical approach, and the implementation in these familiar tools.

As you progress, you'll discover the importance of geography, how to chart changes in data over time, how to use survival analysis to understand customer tenure and churn, and the factors that affect survival. You will explore methods for analyzing customer purchases patterns, market basket analysis, and association rules. Included are important data mining models in SQL, linear regression models, naive Bayesian models, information on building a customer signature, methods for analyzing results, including cumulative gains charts and ROC charts, best practices for using SQL, and getting the best performance for your queries.

With more than 100 pages of new material, the fully revised second edition of Data Analysis Using SQL and Excel enables you to:

  • Understand core analytic techniques that work with SQL and Excel
  • Analyze and interpret data in a table
  • Present data professionally in Excel charts
  • Apply the chi-square measure and other important statistical techniques in both SQL and Excel
  • Understand best practices for SQL queries, with a chapter devoted to performance
  • Use survival analysis to understand time-to-event problems, both for single events and for repeated events
  • Use market basket analysis to understand purchasing behavior
  • Identify the analytic approach that gets the result you're looking for
  • Avoid common pitfalls
  • Maximize the value of the data you have about your customers and your business

The companion website includes datasets for all examples in the book as well as related Excel spreadsheets.

[...]

Learn to perform sophisticated data analysis using SQL and Excel

SQL is the essential language for querying databases, and Excel is the most popular tool for data presentation and analysis. Combined, they create a powerful, accessible tool for business data analysis. Many important types of analysis do not require complex and expensive data mining tools. The answers are on your desktop.

This no-nonsense guide, written by a leading expert on business data mining, shows you how to design and perform sophisticated data analysis using SQL and Excel. The highly regarded first edition has been revised to cover the newest enhancements to SQL and Excel, including new techniques and real-world examples. This edition features the up-to-date information business managers and data analysts need.

The book begins with the basics of SQL for data mining, Excel to present results, and simple ideas from statistics to understand your data. Core analytic techniques are explained as you learn to run them on real data using Excel and SQL. The chapters progress from basic queries to increasingly detailed applications as you learn why and when to perform specific types of analysis, how to design and perform them, and powerful ways of presenting the results. Each step explains the business context, the technical approach, and the implementation in these familiar tools.

As you progress, you'll discover the importance of geography, how to chart changes in data over time, how to use survival analysis to understand customer tenure and churn, and the factors that affect survival. You will explore methods for analyzing customer purchases patterns, market basket analysis, and association rules. Included are important data mining models in SQL, linear regression models, naive Bayesian models, information on building a customer signature, methods for analyzing results, including cumulative gains charts and ROC charts, best practices for using SQL, and getting the best performance for your queries.

With more than 100 pages of new material, the fully revised second edition of Data Analysis Using SQL and Excel enables you to:

  • Understand core analytic techniques that work with SQL and Excel
  • Analyze and interpret data in a table
  • Present data professionally in Excel charts
  • Apply the chi-square measure and other important statistical techniques in both SQL and Excel
  • Understand best practices for SQL queries, with a chapter devoted to performance
  • Use survival analysis to understand time-to-event problems, both for single events and for repeated events
  • Use market basket analysis to understand purchasing behavior
  • Identify the analytic approach that gets the result you're looking for
  • Avoid common pitfalls
  • Maximize the value of the data you have about your customers and your business

The companion website includes datasets for all examples in the book as well as related Excel spreadsheets.

[...]

Über den Autor

GORDON S. LINOFF has been working with databases for more decades than he cares to admit. He starting learning about SQL by memorizing the SQL 92 standard while leading a development team (at the now-defunct Thinking Machines Corporation) writing the first high-performance database focused on the complex queries needed for decision support.

After that endeavor, Gordon co-founded Data Miners in 1998, a consulting practice devoted to data mining, analytics, and big data. A constant theme in his work is data?and often data in relational databases. His SQL skills have only gotten stronger over the years. In 2014, he was the top contributor to Stack Overflow, the leading question-and-answer-site for technical questions.

His other books include the bestselling Data Mining Techniques, Third Edition; Mastering Data Mining; and Mining the Web?which focus on data mining and analysis. This book follows on the popularity of the first edition, with a practical focus on how to actually get and interpret results.

Inhaltsverzeichnis

Foreword xxxiii

Introduction xxxvii

Chapter 1 A Data Miner Looks at SQL 1

Databases, SQL, and Big Data 2

Picturing the Structure of the Data 6

Picturing Data Analysis Using Dataflows 16

SQL Queries 21

Subqueries and Common Table Expressions Are Our Friends 36

Lessons Learned 47

Chapter 2 What's in a Table? Getting Started with Data Exploration 49

What Is Data Exploration? 50

Excel for Charting 51

Sparklines 65

What Values Are in the Columns? 68

More Values to Explore-Min, Max, and Mode 79

Exploring String Values 81

Exploring Values in Two Columns 86

From Summarizing One Column to Summarizing All Columns 90

Lessons Learned 96

Chapter 3 How Different Is Different? 97

Basic Statistical Concepts 98

How Different Are the Averages? 105

Sampling from a Table 110

Counting Possibilities 115

Ratios and Their Statistics 128

Chi-Square 132

What Months and Payment Types Have Unusual Affinities for Which Types of Products? 140

Lessons Learned 143

Chapter 4 Where Is It All Happening? Location, Location, Location 145

Latitude and Longitude 146

Census Demographics 160

Geographic Hierarchies 172

Mapping in Excel 188

Lessons Learned 194

Chapter 5 It's a Matter of Time 197

Dates and Times in Databases 198

Starting to Investigate Dates 204

How Long Between Two Dates? 218

Year-over-Year Comparisons 229

Counting Active Customers by Day 239

Simple Chart Animation in Excel 247

Lessons Learned 254

Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255

Background on Survival Analysis 256

The Hazard Calculation 260

Survival and Retention 269

Comparing Different Groups of Customers 280

Comparing Survival over Time 287

Important Measures Derived from Survival 293

Using Survival for Customer Value Calculations 298

Forecasting 308

Lessons Learned 314

Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315

Which Factors Are Important and When 316

Left Truncation 328

Time Windowing 336

Competing Risks 342

Before and After 353

Lessons Learned 366

Chapter 8 Customer Purchases and Other Repeated Events 367

Identifying Customers 368

RFM Analysis 393

Which Households Are Increasing Purchase Amounts Over Time? 404

Time to Next Event 416

Lessons Learned 420

Chapter 9 What's in a Shopping Cart? Market Basket Analysis 421

Exploring the Products 422

Products and Customer Worth 437

Product Geographic Distribution 448

Which Customers Have Particular Products? 451

Lessons Learned 463

Chapter 10 Association Rules and Beyond 465

Item Sets 466

The Simplest Association Rules 480

One-Way Association Rules 483

Two-Way Associations 489

Extending Association Rules 499

Lessons Learned 506

Chapter 11 Data Mining Models in SQL 507

Introduction to Directed Data Mining 508

Look-Alike Models 515

Lookup Model for Most Popular Product 522

Lookup Model for Order Size 528

Lookup Model for Probability of Response 534

Naive Bayesian Models (Evidence Models) 546

Lessons Learned 559

Chapter 12 The Best-Fit Line: Linear Regression Models 561

The Best-Fit Line 562

Measuring Goodness of Fit Using R2 581

Direct Calculation of Best-Fit Line Coefficients 584

Weighted Linear Regression 592

More Than One Input Variable 600

Lessons Learned 607

Chapter 13 Building Customer Signatures for Further Analysis 609

What Is a Customer Signature? 610

Designing Customer Signatures 617

Operations to Build Customer Signatures 622

Extracting Features 639

Summarizing Customer Behaviors 644

Lessons Learned 653

Chapter 14 Performance Is the Issue: Using SQL Effectively 655

Query Engines and Performance 656

Considerations When Thinking About Performance 660

Performance: Its Meaning and Measurement 663

Performance Improvement 101 665

Using Indexes Effectively 668

When OR Is a Bad Thing 683

Pros and Cons: Different Ways of Expressing the Same Thing 686

Window Functions 694

Lessons Learned 701

Appendix Equivalent Constructs Among Databases 703

Index 731

Details
Erscheinungsjahr: 2015
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 800 S.
ISBN-13: 9781119021438
ISBN-10: 111902143X
Sprache: Englisch
Herstellernummer: 1W119021430
Einband: Kartoniert / Broschiert
Autor: Linoff, Gordon S
Auflage: 2nd Revised edition
Hersteller: Wiley
John Wiley & Sons
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 233 x 187 x 43 mm
Von/Mit: Gordon S Linoff
Erscheinungsdatum: 14.12.2015
Gewicht: 1,325 kg
Artikel-ID: 104947567
Über den Autor

GORDON S. LINOFF has been working with databases for more decades than he cares to admit. He starting learning about SQL by memorizing the SQL 92 standard while leading a development team (at the now-defunct Thinking Machines Corporation) writing the first high-performance database focused on the complex queries needed for decision support.

After that endeavor, Gordon co-founded Data Miners in 1998, a consulting practice devoted to data mining, analytics, and big data. A constant theme in his work is data?and often data in relational databases. His SQL skills have only gotten stronger over the years. In 2014, he was the top contributor to Stack Overflow, the leading question-and-answer-site for technical questions.

His other books include the bestselling Data Mining Techniques, Third Edition; Mastering Data Mining; and Mining the Web?which focus on data mining and analysis. This book follows on the popularity of the first edition, with a practical focus on how to actually get and interpret results.

Inhaltsverzeichnis

Foreword xxxiii

Introduction xxxvii

Chapter 1 A Data Miner Looks at SQL 1

Databases, SQL, and Big Data 2

Picturing the Structure of the Data 6

Picturing Data Analysis Using Dataflows 16

SQL Queries 21

Subqueries and Common Table Expressions Are Our Friends 36

Lessons Learned 47

Chapter 2 What's in a Table? Getting Started with Data Exploration 49

What Is Data Exploration? 50

Excel for Charting 51

Sparklines 65

What Values Are in the Columns? 68

More Values to Explore-Min, Max, and Mode 79

Exploring String Values 81

Exploring Values in Two Columns 86

From Summarizing One Column to Summarizing All Columns 90

Lessons Learned 96

Chapter 3 How Different Is Different? 97

Basic Statistical Concepts 98

How Different Are the Averages? 105

Sampling from a Table 110

Counting Possibilities 115

Ratios and Their Statistics 128

Chi-Square 132

What Months and Payment Types Have Unusual Affinities for Which Types of Products? 140

Lessons Learned 143

Chapter 4 Where Is It All Happening? Location, Location, Location 145

Latitude and Longitude 146

Census Demographics 160

Geographic Hierarchies 172

Mapping in Excel 188

Lessons Learned 194

Chapter 5 It's a Matter of Time 197

Dates and Times in Databases 198

Starting to Investigate Dates 204

How Long Between Two Dates? 218

Year-over-Year Comparisons 229

Counting Active Customers by Day 239

Simple Chart Animation in Excel 247

Lessons Learned 254

Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255

Background on Survival Analysis 256

The Hazard Calculation 260

Survival and Retention 269

Comparing Different Groups of Customers 280

Comparing Survival over Time 287

Important Measures Derived from Survival 293

Using Survival for Customer Value Calculations 298

Forecasting 308

Lessons Learned 314

Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315

Which Factors Are Important and When 316

Left Truncation 328

Time Windowing 336

Competing Risks 342

Before and After 353

Lessons Learned 366

Chapter 8 Customer Purchases and Other Repeated Events 367

Identifying Customers 368

RFM Analysis 393

Which Households Are Increasing Purchase Amounts Over Time? 404

Time to Next Event 416

Lessons Learned 420

Chapter 9 What's in a Shopping Cart? Market Basket Analysis 421

Exploring the Products 422

Products and Customer Worth 437

Product Geographic Distribution 448

Which Customers Have Particular Products? 451

Lessons Learned 463

Chapter 10 Association Rules and Beyond 465

Item Sets 466

The Simplest Association Rules 480

One-Way Association Rules 483

Two-Way Associations 489

Extending Association Rules 499

Lessons Learned 506

Chapter 11 Data Mining Models in SQL 507

Introduction to Directed Data Mining 508

Look-Alike Models 515

Lookup Model for Most Popular Product 522

Lookup Model for Order Size 528

Lookup Model for Probability of Response 534

Naive Bayesian Models (Evidence Models) 546

Lessons Learned 559

Chapter 12 The Best-Fit Line: Linear Regression Models 561

The Best-Fit Line 562

Measuring Goodness of Fit Using R2 581

Direct Calculation of Best-Fit Line Coefficients 584

Weighted Linear Regression 592

More Than One Input Variable 600

Lessons Learned 607

Chapter 13 Building Customer Signatures for Further Analysis 609

What Is a Customer Signature? 610

Designing Customer Signatures 617

Operations to Build Customer Signatures 622

Extracting Features 639

Summarizing Customer Behaviors 644

Lessons Learned 653

Chapter 14 Performance Is the Issue: Using SQL Effectively 655

Query Engines and Performance 656

Considerations When Thinking About Performance 660

Performance: Its Meaning and Measurement 663

Performance Improvement 101 665

Using Indexes Effectively 668

When OR Is a Bad Thing 683

Pros and Cons: Different Ways of Expressing the Same Thing 686

Window Functions 694

Lessons Learned 701

Appendix Equivalent Constructs Among Databases 703

Index 731

Details
Erscheinungsjahr: 2015
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 800 S.
ISBN-13: 9781119021438
ISBN-10: 111902143X
Sprache: Englisch
Herstellernummer: 1W119021430
Einband: Kartoniert / Broschiert
Autor: Linoff, Gordon S
Auflage: 2nd Revised edition
Hersteller: Wiley
John Wiley & Sons
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 233 x 187 x 43 mm
Von/Mit: Gordon S Linoff
Erscheinungsdatum: 14.12.2015
Gewicht: 1,325 kg
Artikel-ID: 104947567
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte