Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Cryptography Engineering
Design Principles and Practical Applications
Taschenbuch von Bruce Schneier (u. a.)
Sprache: Englisch

54,55 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The ultimate guide to cryptography, updated from an author team of the world's top cryptography experts.

Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.

After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.
* An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography
* Shows you how to build cryptography into products from the start
* Examines updates and changes to cryptography
* Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more

Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.
The ultimate guide to cryptography, updated from an author team of the world's top cryptography experts.

Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.

After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.
* An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography
* Shows you how to build cryptography into products from the start
* Examines updates and changes to cryptography
* Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more

Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.
Über den Autor
Niels Ferguson is a cryptographer for Microsoft who has designed and implemented cryptographic algorithms, protocols, and large-scale security infrastructures.

Bruce Schneier is an internationally renowned security technologist whose advice is sought by business, government, and the media. He is the author of Applied Cryptography, Secrets and Lies, and Schneier on Security.

Tadayoshi Kohno is a professor at the University of Washington. He is known for his research and for developing innovative new approaches to cryptography and computer security education.

Inhaltsverzeichnis

Preface to Cryptography Engineering xxiii

History xxiv

Example Syllabi xxiv

Additional Information xxvi

Preface to Practical Cryptography (the 1st Edition) xxvii

How to Read this Book xxix

Part I Introduction 1

Chapter 1 The Context of Cryptography 3

1.1 The Role of Cryptography 4

1.2 The Weakest Link Property 5

1.3 The Adversarial Setting 7

1.4 Professional Paranoia 8

1.4.1 Broader Benefits 9

1.4.2 Discussing Attacks 9

1.5 Threat Model 10

1.6 Cryptography Is Not the Solution 12

1.7 Cryptography Is Very Difficult 13

1.8 Cryptography Is the Easy Part 13

1.9 Generic Attacks 14

1.10 Security and Other Design Criteria 14

1.10.1 Security Versus Performance 14

1.10.2 Security Versus Features 17

1.10.3 Security Versus Evolving Systems 17

1.11 Further Reading 18

1.12 Exercises for Professional Paranoia 18

1.12.1 Current Event Exercises 19

1.12.2 Security Review Exercises 20

1.13 General Exercises 21

Chapter 2 Introduction to Cryptography 23

2.1 Encryption 23

2.1.1 Kerckhoffs' Principle 24

2.2 Authentication 25

2.3 Public-Key Encryption 27

2.4 Digital Signatures 29

2.5 PKI 29

2.6 Attacks 31

2.6.1 The Ciphertext-Only Model 31

2.6.2 The Known-Plaintext Model 31

2.6.3 The Chosen-Plaintext Model 32

2.6.4 The Chosen-Ciphertext Model 32

2.6.5 The Distinguishing Attack Goal 32

2.6.6 Other Types of Attack 33

2.7 Under the Hood 33

2.7.1 Birthday Attacks 33

2.7.2 Meet-in-the-Middle Attacks 34

2.8 Security Level 36

2.9 Performance 37

2.10 Complexity 37

2.11 Exercises 38

Part II Message Security 41

Chapter 3 Block Ciphers 43

3.1 What Is a Block Cipher? 43

3.2 Types of Attack 44

3.3 The Ideal Block Cipher 46

3.4 Definition of Block Cipher Security 46

3.4.1 Parity of a Permutation 49

3.5 Real Block Ciphers 50

3.5.1 DES 51

3.5.2 AES 54

3.5.3 Serpent 56

3.5.4 Twofish 57

3.5.5 Other AES Finalists 58

3.5.6 Which Block Cipher Should I Choose? 59

3.5.7 What Key Size Should I Use? 60

3.6 Exercises 61

Chapter 4 Block Cipher Modes 63

4.1 Padding 64

4.2 ECB 65

4.3 CBC 65

4.3.1 Fixed IV 66

4.3.2 Counter IV 66

4.3.3 Random IV 66

4.3.4 Nonce-Generated IV 67

4.4 OFB 68

4.5 CTR 70

4.6 Combined Encryption and Authentication 71

4.7 Which Mode Should I Use? 71

4.8 Information Leakage 72

4.8.1 Chances of a Collision 73

4.8.2 How to Deal With Leakage 74

4.8.3 About Our Math 75

4.9 Exercises 75

Chapter 5 Hash Functions 77

5.1 Security of Hash Functions 78

5.2 Real Hash Functions 79

5.2.1 A Simple But Insecure Hash Function 80

5.2.2 MD5 81

5.2.3 SHA-1 82

5.2.4 SHA-224, SHA-256, SHA-384, and SHA-512 82

5.3 Weaknesses of Hash Functions 83

5.3.1 Length Extensions 83

5.3.2 Partial-Message Collision 84

5.4 Fixing the Weaknesses 84

5.4.1 Toward a Short-term Fix 85

5.4.2 A More Efficient Short-term Fix 85

5.4.3 Another Fix 87

5.5 Which Hash Function Should I Choose? 87

5.6 Exercises 87

Chapter 6 Message Authentication Codes 89

6.1 What a MAC Does 89

6.2 The Ideal MAC and MAC Security 90

6.3 CBC-MAC and CMAC 91

6.4 HMAC 93

6.5 GMAC 94

6.6 Which MAC to Choose? 95

6.7 Using a MAC 95

6.8 Exercises 97

Chapter 7 The Secure Channel 99

7.1 Properties of a Secure Channel 99

7.1.1 Roles 99

7.1.2 Key 100

7.1.3 Messages or Stream 100

7.1.4 Security Properties 101

7.2 Order of Authentication and Encryption 102

7.3 Designing a Secure Channel: Overview 104

7.3.1 Message Numbers 105

7.3.2 Authentication 106

7.3.3 Encryption 106

7.3.4 Frame Format 107

7.4 Design Details 107

7.4.1 Initialization 107

7.4.2 Sending a Message 108

7.4.3 Receiving a Message 109

7.4.4 Message Order 111

7.5 Alternatives 112

7.6 Exercises 113

Chapter 8 Implementation Issues (I) 115

8.1 Creating Correct Programs 116

8.1.1 Specifications 117

8.1.2 Test and Fix 118

8.1.3 Lax Attitude 119

8.1.4 So How Do We Proceed? 119

8.2 Creating Secure Software 120

8.3 Keeping Secrets 120

8.3.1 Wiping State 121

8.3.2 Swap File 122

8.3.3 Caches 124

8.3.4 Data Retention by Memory 125

8.3.5 Access by Others 127

8.3.6 Data Integrity 127

8.3.7 What to Do 128

8.4 Quality of Code 128

8.4.1 Simplicity 129

8.4.2 Modularization 129

8.4.3 Assertions 130

8.4.4 Buffer Overflows 131

8.4.5 Testing 131

8.5 Side-Channel Attacks 132

8.6 Beyond this Chapter 133

8.7 Exercises 133

Part III Key Negotiation 135

Chapter 9 Generating Randomness 137

9.1 Real Random 138

9.1.1 Problems With Using Real Random Data 139

9.1.2 Pseudorandom Data 140

9.1.3 Real Random Data and PRNGS 140

9.2 Attack Models for a PRNG 141

9.3 Fortuna 142

9.4 The Generator 143

9.4.1 Initialization 145

9.4.2 Reseed 145

9.4.3 Generate Blocks 146

9.4.4 Generate Random Data 146

9.4.5 Generator Speed 147

9.5 Accumulator 147

9.5.1 Entropy Sources 147

9.5.2 Pools 148

9.5.3 Implementation Considerations 150

9.5.3.1 Distribution of Events Over Pools 150

9.5.3.2 Running Time of Event Passing 151

9.5.4 Initialization 152

9.5.5 Getting Random Data 153

9.5.6 Add an Event 154

9.6 Seed File Management 155

9.6.1 Write Seed File 156

9.6.2 Update Seed File 156

9.6.3 When to Read and Write the Seed File 157

9.6.4 Backups and Virtual Machines 157

9.6.5 Atomicity of File System Updates 158

9.6.6 First Boot 158

9.7 Choosing Random Elements 159

9.8 Exercises 161

Chapter 10 Primes 163

10.1 Divisibility and Primes 163

10.2 Generating Small Primes 166

10.3 Computations Modulo a Prime 167

10.3.1 Addition and Subtraction 168

10.3.2 Multiplication 169

10.3.3 Groups and Finite Fields 169

10.3.4 The GCD Algorithm 170

10.3.5 The Extended Euclidean Algorithm 171

10.3.6 Working Modulo 2 172

10.4 Large Primes 173

10.4.1 Primality Testing 176

10.4.2 Evaluating Powers 178

10.5 Exercises 179

Chapter 11 Diffie-Hellman 181

11.1 Groups 182

11.2 Basic DH 183

11.3 Man in the Middle 184

11.4 Pitfalls 185

11.5 Safe Primes 186

11.6 Using a Smaller Subgroup 187

11.7 The Size of p 188

11.8 Practical Rules 190

11.9 What Can Go Wrong? 191

11.10 Exercises 193

Chapter 12 RSA 195

12.1 Introduction 195

12.2 The Chinese Remainder Theorem 196

12.2.1 Garner's Formula 196

12.2.2 Generalizations 197

12.2.3 Uses 198

12.2.4 Conclusion 199

12.3 Multiplication Modulo n 199

12.4 RSA Defined 200

12.4.1 Digital Signatures with RSA 200

12.4.2 Public Exponents 201

12.4.3 The Private Key 202

12.4.4 The Size of n 203

12.4.5 Generating RSA Keys 203

12.5 Pitfalls Using RSA 205

12.6 Encryption 206

12.7 Signatures 209

12.8 Exercises 211

Chapter 13 Introduction to Cryptographic Protocols 213

13.1 Roles 213

13.2 Trust 214

13.2.1 Risk 215

13.3 Incentive 215

13.4 Trust in Cryptographic Protocols 217

13.5 Messages and Steps 218

13.5.1 The Transport Layer 219

13.5.2 Protocol and Message Identity 219

13.5.3 Message Encoding and Parsing 220

13.5.4 Protocol Execution States 221

13.5.5 Errors 221

13.5.6 Replay and Retries 223

13.6 Exercises 225

Chapter 14 Key Negotiation 227

14.1 The Setting 227

14.2 A First Try 228

14.3 Protocols Live Forever 229

14.4 An Authentication Convention 230

14.5 A Second Attempt 231

14.6 A Third Attempt 232

14.7 The Final Protocol 233

14.8 Different Views of the Protocol 235

14.8.1 Alice's View 235

14.8.2 Bob's View 236

14.8.3 Attacker's View 236

14.8.4 Key Compromise 238

14.9 Computational Complexity of the Protocol 238

14.9.1 Optimization Tricks 239

14.10 Protocol Complexity 240

14.11 A Gentle Warning 241

14.12 Key Negotiation from a Password 241

14.13 Exercises 241

Chapter 15 Implementation Issues (II) 243

15.1 Large Integer Arithmetic 243

15.1.1 Wooping 245

15.1.2 Checking DH Computations 248

15.1.3 Checking RSA Encryption 248

15.1.4 Checking RSA Signatures 249

15.1.5 Conclusion 249

15.2 Faster Multiplication 249

15.3 Side-Channel Attacks 250

15.3.1 Countermeasures 251

15.4 Protocols 252

15.4.1 Protocols Over a Secure Channel 253

15.4.2 Receiving a Message 253

15.4.3 Timeouts 255

15.5 Exercises 255

Part IV Key Management 257

Chapter 16 The Clock 259

16.1 Uses for a Clock 259

16.1.1 Expiration 259

16.1.2 Unique Value 260

16.1.3 Monotonicity 260

16.1.4 Real-Time Transactions 260

16.2 Using the Real-Time Clock Chip 261

16.3 Security Dangers 262

...
Details
Erscheinungsjahr: 2010
Fachbereich: Datenkommunikation, Netze & Mailboxen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 353 S.
ISBN-13: 9780470474242
ISBN-10: 0470474246
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Schneier, Bruce
Ferguson, Niels
Kohno, Tadayoshi
Hersteller: John Wiley & Sons
John Wiley & Sons Inc
Maße: 233 x 189 x 27 mm
Von/Mit: Bruce Schneier (u. a.)
Erscheinungsdatum: 05.03.2010
Gewicht: 0,578 kg
Artikel-ID: 101437438
Über den Autor
Niels Ferguson is a cryptographer for Microsoft who has designed and implemented cryptographic algorithms, protocols, and large-scale security infrastructures.

Bruce Schneier is an internationally renowned security technologist whose advice is sought by business, government, and the media. He is the author of Applied Cryptography, Secrets and Lies, and Schneier on Security.

Tadayoshi Kohno is a professor at the University of Washington. He is known for his research and for developing innovative new approaches to cryptography and computer security education.

Inhaltsverzeichnis

Preface to Cryptography Engineering xxiii

History xxiv

Example Syllabi xxiv

Additional Information xxvi

Preface to Practical Cryptography (the 1st Edition) xxvii

How to Read this Book xxix

Part I Introduction 1

Chapter 1 The Context of Cryptography 3

1.1 The Role of Cryptography 4

1.2 The Weakest Link Property 5

1.3 The Adversarial Setting 7

1.4 Professional Paranoia 8

1.4.1 Broader Benefits 9

1.4.2 Discussing Attacks 9

1.5 Threat Model 10

1.6 Cryptography Is Not the Solution 12

1.7 Cryptography Is Very Difficult 13

1.8 Cryptography Is the Easy Part 13

1.9 Generic Attacks 14

1.10 Security and Other Design Criteria 14

1.10.1 Security Versus Performance 14

1.10.2 Security Versus Features 17

1.10.3 Security Versus Evolving Systems 17

1.11 Further Reading 18

1.12 Exercises for Professional Paranoia 18

1.12.1 Current Event Exercises 19

1.12.2 Security Review Exercises 20

1.13 General Exercises 21

Chapter 2 Introduction to Cryptography 23

2.1 Encryption 23

2.1.1 Kerckhoffs' Principle 24

2.2 Authentication 25

2.3 Public-Key Encryption 27

2.4 Digital Signatures 29

2.5 PKI 29

2.6 Attacks 31

2.6.1 The Ciphertext-Only Model 31

2.6.2 The Known-Plaintext Model 31

2.6.3 The Chosen-Plaintext Model 32

2.6.4 The Chosen-Ciphertext Model 32

2.6.5 The Distinguishing Attack Goal 32

2.6.6 Other Types of Attack 33

2.7 Under the Hood 33

2.7.1 Birthday Attacks 33

2.7.2 Meet-in-the-Middle Attacks 34

2.8 Security Level 36

2.9 Performance 37

2.10 Complexity 37

2.11 Exercises 38

Part II Message Security 41

Chapter 3 Block Ciphers 43

3.1 What Is a Block Cipher? 43

3.2 Types of Attack 44

3.3 The Ideal Block Cipher 46

3.4 Definition of Block Cipher Security 46

3.4.1 Parity of a Permutation 49

3.5 Real Block Ciphers 50

3.5.1 DES 51

3.5.2 AES 54

3.5.3 Serpent 56

3.5.4 Twofish 57

3.5.5 Other AES Finalists 58

3.5.6 Which Block Cipher Should I Choose? 59

3.5.7 What Key Size Should I Use? 60

3.6 Exercises 61

Chapter 4 Block Cipher Modes 63

4.1 Padding 64

4.2 ECB 65

4.3 CBC 65

4.3.1 Fixed IV 66

4.3.2 Counter IV 66

4.3.3 Random IV 66

4.3.4 Nonce-Generated IV 67

4.4 OFB 68

4.5 CTR 70

4.6 Combined Encryption and Authentication 71

4.7 Which Mode Should I Use? 71

4.8 Information Leakage 72

4.8.1 Chances of a Collision 73

4.8.2 How to Deal With Leakage 74

4.8.3 About Our Math 75

4.9 Exercises 75

Chapter 5 Hash Functions 77

5.1 Security of Hash Functions 78

5.2 Real Hash Functions 79

5.2.1 A Simple But Insecure Hash Function 80

5.2.2 MD5 81

5.2.3 SHA-1 82

5.2.4 SHA-224, SHA-256, SHA-384, and SHA-512 82

5.3 Weaknesses of Hash Functions 83

5.3.1 Length Extensions 83

5.3.2 Partial-Message Collision 84

5.4 Fixing the Weaknesses 84

5.4.1 Toward a Short-term Fix 85

5.4.2 A More Efficient Short-term Fix 85

5.4.3 Another Fix 87

5.5 Which Hash Function Should I Choose? 87

5.6 Exercises 87

Chapter 6 Message Authentication Codes 89

6.1 What a MAC Does 89

6.2 The Ideal MAC and MAC Security 90

6.3 CBC-MAC and CMAC 91

6.4 HMAC 93

6.5 GMAC 94

6.6 Which MAC to Choose? 95

6.7 Using a MAC 95

6.8 Exercises 97

Chapter 7 The Secure Channel 99

7.1 Properties of a Secure Channel 99

7.1.1 Roles 99

7.1.2 Key 100

7.1.3 Messages or Stream 100

7.1.4 Security Properties 101

7.2 Order of Authentication and Encryption 102

7.3 Designing a Secure Channel: Overview 104

7.3.1 Message Numbers 105

7.3.2 Authentication 106

7.3.3 Encryption 106

7.3.4 Frame Format 107

7.4 Design Details 107

7.4.1 Initialization 107

7.4.2 Sending a Message 108

7.4.3 Receiving a Message 109

7.4.4 Message Order 111

7.5 Alternatives 112

7.6 Exercises 113

Chapter 8 Implementation Issues (I) 115

8.1 Creating Correct Programs 116

8.1.1 Specifications 117

8.1.2 Test and Fix 118

8.1.3 Lax Attitude 119

8.1.4 So How Do We Proceed? 119

8.2 Creating Secure Software 120

8.3 Keeping Secrets 120

8.3.1 Wiping State 121

8.3.2 Swap File 122

8.3.3 Caches 124

8.3.4 Data Retention by Memory 125

8.3.5 Access by Others 127

8.3.6 Data Integrity 127

8.3.7 What to Do 128

8.4 Quality of Code 128

8.4.1 Simplicity 129

8.4.2 Modularization 129

8.4.3 Assertions 130

8.4.4 Buffer Overflows 131

8.4.5 Testing 131

8.5 Side-Channel Attacks 132

8.6 Beyond this Chapter 133

8.7 Exercises 133

Part III Key Negotiation 135

Chapter 9 Generating Randomness 137

9.1 Real Random 138

9.1.1 Problems With Using Real Random Data 139

9.1.2 Pseudorandom Data 140

9.1.3 Real Random Data and PRNGS 140

9.2 Attack Models for a PRNG 141

9.3 Fortuna 142

9.4 The Generator 143

9.4.1 Initialization 145

9.4.2 Reseed 145

9.4.3 Generate Blocks 146

9.4.4 Generate Random Data 146

9.4.5 Generator Speed 147

9.5 Accumulator 147

9.5.1 Entropy Sources 147

9.5.2 Pools 148

9.5.3 Implementation Considerations 150

9.5.3.1 Distribution of Events Over Pools 150

9.5.3.2 Running Time of Event Passing 151

9.5.4 Initialization 152

9.5.5 Getting Random Data 153

9.5.6 Add an Event 154

9.6 Seed File Management 155

9.6.1 Write Seed File 156

9.6.2 Update Seed File 156

9.6.3 When to Read and Write the Seed File 157

9.6.4 Backups and Virtual Machines 157

9.6.5 Atomicity of File System Updates 158

9.6.6 First Boot 158

9.7 Choosing Random Elements 159

9.8 Exercises 161

Chapter 10 Primes 163

10.1 Divisibility and Primes 163

10.2 Generating Small Primes 166

10.3 Computations Modulo a Prime 167

10.3.1 Addition and Subtraction 168

10.3.2 Multiplication 169

10.3.3 Groups and Finite Fields 169

10.3.4 The GCD Algorithm 170

10.3.5 The Extended Euclidean Algorithm 171

10.3.6 Working Modulo 2 172

10.4 Large Primes 173

10.4.1 Primality Testing 176

10.4.2 Evaluating Powers 178

10.5 Exercises 179

Chapter 11 Diffie-Hellman 181

11.1 Groups 182

11.2 Basic DH 183

11.3 Man in the Middle 184

11.4 Pitfalls 185

11.5 Safe Primes 186

11.6 Using a Smaller Subgroup 187

11.7 The Size of p 188

11.8 Practical Rules 190

11.9 What Can Go Wrong? 191

11.10 Exercises 193

Chapter 12 RSA 195

12.1 Introduction 195

12.2 The Chinese Remainder Theorem 196

12.2.1 Garner's Formula 196

12.2.2 Generalizations 197

12.2.3 Uses 198

12.2.4 Conclusion 199

12.3 Multiplication Modulo n 199

12.4 RSA Defined 200

12.4.1 Digital Signatures with RSA 200

12.4.2 Public Exponents 201

12.4.3 The Private Key 202

12.4.4 The Size of n 203

12.4.5 Generating RSA Keys 203

12.5 Pitfalls Using RSA 205

12.6 Encryption 206

12.7 Signatures 209

12.8 Exercises 211

Chapter 13 Introduction to Cryptographic Protocols 213

13.1 Roles 213

13.2 Trust 214

13.2.1 Risk 215

13.3 Incentive 215

13.4 Trust in Cryptographic Protocols 217

13.5 Messages and Steps 218

13.5.1 The Transport Layer 219

13.5.2 Protocol and Message Identity 219

13.5.3 Message Encoding and Parsing 220

13.5.4 Protocol Execution States 221

13.5.5 Errors 221

13.5.6 Replay and Retries 223

13.6 Exercises 225

Chapter 14 Key Negotiation 227

14.1 The Setting 227

14.2 A First Try 228

14.3 Protocols Live Forever 229

14.4 An Authentication Convention 230

14.5 A Second Attempt 231

14.6 A Third Attempt 232

14.7 The Final Protocol 233

14.8 Different Views of the Protocol 235

14.8.1 Alice's View 235

14.8.2 Bob's View 236

14.8.3 Attacker's View 236

14.8.4 Key Compromise 238

14.9 Computational Complexity of the Protocol 238

14.9.1 Optimization Tricks 239

14.10 Protocol Complexity 240

14.11 A Gentle Warning 241

14.12 Key Negotiation from a Password 241

14.13 Exercises 241

Chapter 15 Implementation Issues (II) 243

15.1 Large Integer Arithmetic 243

15.1.1 Wooping 245

15.1.2 Checking DH Computations 248

15.1.3 Checking RSA Encryption 248

15.1.4 Checking RSA Signatures 249

15.1.5 Conclusion 249

15.2 Faster Multiplication 249

15.3 Side-Channel Attacks 250

15.3.1 Countermeasures 251

15.4 Protocols 252

15.4.1 Protocols Over a Secure Channel 253

15.4.2 Receiving a Message 253

15.4.3 Timeouts 255

15.5 Exercises 255

Part IV Key Management 257

Chapter 16 The Clock 259

16.1 Uses for a Clock 259

16.1.1 Expiration 259

16.1.2 Unique Value 260

16.1.3 Monotonicity 260

16.1.4 Real-Time Transactions 260

16.2 Using the Real-Time Clock Chip 261

16.3 Security Dangers 262

...
Details
Erscheinungsjahr: 2010
Fachbereich: Datenkommunikation, Netze & Mailboxen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 353 S.
ISBN-13: 9780470474242
ISBN-10: 0470474246
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Schneier, Bruce
Ferguson, Niels
Kohno, Tadayoshi
Hersteller: John Wiley & Sons
John Wiley & Sons Inc
Maße: 233 x 189 x 27 mm
Von/Mit: Bruce Schneier (u. a.)
Erscheinungsdatum: 05.03.2010
Gewicht: 0,578 kg
Artikel-ID: 101437438
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte