171,19 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
The book provides ready-to-use algorithms and parameter sheets, enabling readers to design advanced control charts and machine learning-based approaches for anomaly detection in manufacturing. Case studies are introduced in each chapter to help practitioners easily apply these tools to real-world manufacturing processes.
The book is of interest to researchers, industrial experts, and postgraduate students in the fields of industrial engineering, automation, statistical learning, and manufacturing industries.
The book provides ready-to-use algorithms and parameter sheets, enabling readers to design advanced control charts and machine learning-based approaches for anomaly detection in manufacturing. Case studies are introduced in each chapter to help practitioners easily apply these tools to real-world manufacturing processes.
The book is of interest to researchers, industrial experts, and postgraduate students in the fields of industrial engineering, automation, statistical learning, and manufacturing industries.
Dr. Kim Phuc Tran is an Associate Professor of Artificial Intelligence and Data Science at the ENSAIT and the GEMTEX laboratory, University of Lille, France. His research focuses on anomaly detection and applications, decision support systems with artificial intelligence, federated learning, edge computing and applications. He has published more than 44 papers in international refereed journal papers, 5 book chapters, and 2 editorials as well as over 20 papers in conference proceedings.
Presents an interdisciplinary approach to detect anomalies in smart manufacturing processes
Explains both advanced control charts and machine learning approaches
Offers ready-to-use algorithms, parameter sheets, and numerous case studies
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in Reliability Engineering |
Inhalt: |
vi
269 S. 29 s/w Illustr. 38 farbige Illustr. 269 p. 67 illus. 38 illus. in color. |
ISBN-13: | 9783030838188 |
ISBN-10: | 3030838188 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: | Tran, Kim Phuc |
Herausgeber: | Kim Phuc Tran |
Auflage: | 1st ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Series in Reliability Engineering |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Kim Phuc Tran |
Erscheinungsdatum: | 30.08.2021 |
Gewicht: | 0,582 kg |
Dr. Kim Phuc Tran is an Associate Professor of Artificial Intelligence and Data Science at the ENSAIT and the GEMTEX laboratory, University of Lille, France. His research focuses on anomaly detection and applications, decision support systems with artificial intelligence, federated learning, edge computing and applications. He has published more than 44 papers in international refereed journal papers, 5 book chapters, and 2 editorials as well as over 20 papers in conference proceedings.
Presents an interdisciplinary approach to detect anomalies in smart manufacturing processes
Explains both advanced control charts and machine learning approaches
Offers ready-to-use algorithms, parameter sheets, and numerous case studies
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Springer Series in Reliability Engineering |
Inhalt: |
vi
269 S. 29 s/w Illustr. 38 farbige Illustr. 269 p. 67 illus. 38 illus. in color. |
ISBN-13: | 9783030838188 |
ISBN-10: | 3030838188 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: | Tran, Kim Phuc |
Herausgeber: | Kim Phuc Tran |
Auflage: | 1st ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Series in Reliability Engineering |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Kim Phuc Tran |
Erscheinungsdatum: | 30.08.2021 |
Gewicht: | 0,582 kg |