Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Clustering Methods for Big Data Analytics
Techniques, Toolboxes and Applications
Buch von Chiheb-Eddine Ben N'Cir (u. a.)
Sprache: Englisch

147,95 €*

-8 % UVP 160,49 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
Über den Autor

Olfa Nasraoui is the endowed Chair of e-commerce and the founding director of the Knowledge Discovery & Web Mining Lab at the University of Louisville, where she is also Professor in Computer Engineering & Computer Science. She received her Ph.D in Computer Engineering and Computer Science from the University of Missouri-Columbia in 1999. Her research interests are machine learning algorithms and systems with an emphasis on clustering algorithms, web mining, and recommender systems. She is the recipient of a National Science Foundation CAREER Award and a Best Paper Award for theoretical contributions In computational intelligence at the ANNIE conference.

Chiheb Eddine Ben N'cir received his Ph.D in Computer Science and Management from Higher Institute of Management, University of Tunis, in 2014. Currently, he is an Assistant Professor at the Higher School of Digital Economy (University of Manouba) since 2015 and member of LARODEC laboratory (University of Tunis). He is also a Big Data and Business Intelligence instructor at IBM North Africa and Middle East. His research interests concern unsupervised learning methods and data mining tools with a special emphasis on Big Data clustering, disjoint and non-disjoint partitioning, kernel methods, as well as many other related fields.

Zusammenfassung

Includes the most recent and innovative advances in Big Data Clustering

Describes recent tools, techniques, and frameworks for Big Data Analytics

Introduces surveys, applications and case studies of Big Data clustering in Deep Learning, Blockchain, Cybersecurity, Data Streams, and Tensor graphs

Inhaltsverzeichnis

Introduction.- Clustering large scale data.- Clustering heterogeneous data.- Distributed clustering methods.- Clustering structured and unstructured data.- Clustering and unsupervised learning for deep learning.- Deep learning methods for clustering.- Clustering high speed cloud, grid, and streaming data.- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis.- Large documents and textual data clustering.- Applications of big data clustering methods.- Clustering multimedia and multi-structured data.- Large-scale recommendation systems and social media systems.- Clustering multimedia and multi-structured data.- Real life applications of big data clustering.- Validation measures for big data clustering methods.- Conclusion.

Details
Erscheinungsjahr: 2018
Fachbereich: Nachrichtentechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: ix
187 S.
32 s/w Illustr.
31 farbige Illustr.
187 p. 63 illus.
31 illus. in color.
ISBN-13: 9783319978635
ISBN-10: 3319978632
Sprache: Englisch
Herstellernummer: 978-3-319-97863-5
Einband: Gebunden
Redaktion: Ben N'Cir, Chiheb-Eddine
Nasraoui, Olfa
Herausgeber: Olfa Nasraoui/Chiheb-Eddine Ben N'Cir
Auflage: 1st edition 2019
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 17 mm
Von/Mit: Chiheb-Eddine Ben N'Cir (u. a.)
Erscheinungsdatum: 08.11.2018
Gewicht: 0,471 kg
Artikel-ID: 114027718
Über den Autor

Olfa Nasraoui is the endowed Chair of e-commerce and the founding director of the Knowledge Discovery & Web Mining Lab at the University of Louisville, where she is also Professor in Computer Engineering & Computer Science. She received her Ph.D in Computer Engineering and Computer Science from the University of Missouri-Columbia in 1999. Her research interests are machine learning algorithms and systems with an emphasis on clustering algorithms, web mining, and recommender systems. She is the recipient of a National Science Foundation CAREER Award and a Best Paper Award for theoretical contributions In computational intelligence at the ANNIE conference.

Chiheb Eddine Ben N'cir received his Ph.D in Computer Science and Management from Higher Institute of Management, University of Tunis, in 2014. Currently, he is an Assistant Professor at the Higher School of Digital Economy (University of Manouba) since 2015 and member of LARODEC laboratory (University of Tunis). He is also a Big Data and Business Intelligence instructor at IBM North Africa and Middle East. His research interests concern unsupervised learning methods and data mining tools with a special emphasis on Big Data clustering, disjoint and non-disjoint partitioning, kernel methods, as well as many other related fields.

Zusammenfassung

Includes the most recent and innovative advances in Big Data Clustering

Describes recent tools, techniques, and frameworks for Big Data Analytics

Introduces surveys, applications and case studies of Big Data clustering in Deep Learning, Blockchain, Cybersecurity, Data Streams, and Tensor graphs

Inhaltsverzeichnis

Introduction.- Clustering large scale data.- Clustering heterogeneous data.- Distributed clustering methods.- Clustering structured and unstructured data.- Clustering and unsupervised learning for deep learning.- Deep learning methods for clustering.- Clustering high speed cloud, grid, and streaming data.- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis.- Large documents and textual data clustering.- Applications of big data clustering methods.- Clustering multimedia and multi-structured data.- Large-scale recommendation systems and social media systems.- Clustering multimedia and multi-structured data.- Real life applications of big data clustering.- Validation measures for big data clustering methods.- Conclusion.

Details
Erscheinungsjahr: 2018
Fachbereich: Nachrichtentechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: ix
187 S.
32 s/w Illustr.
31 farbige Illustr.
187 p. 63 illus.
31 illus. in color.
ISBN-13: 9783319978635
ISBN-10: 3319978632
Sprache: Englisch
Herstellernummer: 978-3-319-97863-5
Einband: Gebunden
Redaktion: Ben N'Cir, Chiheb-Eddine
Nasraoui, Olfa
Herausgeber: Olfa Nasraoui/Chiheb-Eddine Ben N'Cir
Auflage: 1st edition 2019
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 17 mm
Von/Mit: Chiheb-Eddine Ben N'Cir (u. a.)
Erscheinungsdatum: 08.11.2018
Gewicht: 0,471 kg
Artikel-ID: 114027718
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte