Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Clifford Algebras and Lie Theory
Buch von Eckhard Meinrenken
Sprache: Englisch

160,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan¿s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci¿s proof of the Poincaré¿Birkhoff¿Witt theorem.
This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflös theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant¿s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his ¿Clifford algebra analogue¿ of the Hopf¿Koszul¿Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.
Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan¿s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci¿s proof of the Poincaré¿Birkhoff¿Witt theorem.
This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflös theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant¿s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his ¿Clifford algebra analogue¿ of the Hopf¿Koszul¿Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.
Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Über den Autor

Main areas of research are symplectic geometry, with applications to Lie theory and mathematical physics.

Professor at the University of Toronto since 1998.

Honors include: Fellowship of the Royal Society of Canada (since 2008), Steacie Fellowship (2007), McLean Award (2003), Andre Aisenstadt Prize (2001).

Invited speaker at the 2002 ICM in Beijing.

Zusammenfassung

Convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics

Included are many developments from the last 15 years, drawn in part from the author's research

Largely self-contained exposition

Includes supplementary material: [...]

Inhaltsverzeichnis

Preface.- Conventions.- List of Symbols.- 1 Symmetric bilinear forms.- 2 Clifford algebras.- 3 The spin representation.- 4 Covariant and contravariant spinors.- 5 Enveloping algebras.- 6 Weil algebras.- 7 Quantum Weil algebras.- 8 Applications to reductive Lie algebras.- 9 D(g; k) as a geometric Dirac operator.- 10 The Hopf-Koszul-Samelson Theorem.- 11 The Clifford algebra of a reductive Lie algebra.- A Graded and filtered super spaces.- B Reductive Lie algebras.- C Background on Lie groups.- References.- Index.

Details
Erscheinungsjahr: 2013
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Inhalt: xx
321 S.
ISBN-13: 9783642362156
ISBN-10: 364236215X
Sprache: Englisch
Herstellernummer: 86146449
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Meinrenken, Eckhard
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Maße: 241 x 160 x 24 mm
Von/Mit: Eckhard Meinrenken
Erscheinungsdatum: 16.03.2013
Gewicht: 0,682 kg
Artikel-ID: 105922867
Über den Autor

Main areas of research are symplectic geometry, with applications to Lie theory and mathematical physics.

Professor at the University of Toronto since 1998.

Honors include: Fellowship of the Royal Society of Canada (since 2008), Steacie Fellowship (2007), McLean Award (2003), Andre Aisenstadt Prize (2001).

Invited speaker at the 2002 ICM in Beijing.

Zusammenfassung

Convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics

Included are many developments from the last 15 years, drawn in part from the author's research

Largely self-contained exposition

Includes supplementary material: [...]

Inhaltsverzeichnis

Preface.- Conventions.- List of Symbols.- 1 Symmetric bilinear forms.- 2 Clifford algebras.- 3 The spin representation.- 4 Covariant and contravariant spinors.- 5 Enveloping algebras.- 6 Weil algebras.- 7 Quantum Weil algebras.- 8 Applications to reductive Lie algebras.- 9 D(g; k) as a geometric Dirac operator.- 10 The Hopf-Koszul-Samelson Theorem.- 11 The Clifford algebra of a reductive Lie algebra.- A Graded and filtered super spaces.- B Reductive Lie algebras.- C Background on Lie groups.- References.- Index.

Details
Erscheinungsjahr: 2013
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Inhalt: xx
321 S.
ISBN-13: 9783642362156
ISBN-10: 364236215X
Sprache: Englisch
Herstellernummer: 86146449
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Meinrenken, Eckhard
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Maße: 241 x 160 x 24 mm
Von/Mit: Eckhard Meinrenken
Erscheinungsdatum: 16.03.2013
Gewicht: 0,682 kg
Artikel-ID: 105922867
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte