Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
67,90 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Noch keine Beschreibung vorhanden. Sollten Sie Fragen zu dem Artikel haben, helfen wir Ihnen gerne weiter.
Über den Autor
Roman Garnett is Associate Professor at Washington University in St. Louis. He has been a leader in the Bayesian optimization community since 2011, when he co-founded a long-running workshop on the subject at the NeurIPS conference. His research focus is developing Bayesian methods - including Bayesian optimization - for automating scientific discovery, an effort supported by an NSF CAREER award.
Inhaltsverzeichnis
Notation; 1. Introduction; 2. Gaussian processes; 3. Modeling with Gaussian processes; 4. Model assessment, selection, and averaging; 5. Decision theory for optimization; 6. Utility functions for optimization; 7. Common Bayesian optimization policies; 8. Computing policies with Gaussian processes; 9. Implementation; 10. Theoretical analysis; 11. Extensions and related settings; 12. A brief history of Bayesian optimization; A. The Gaussian distribution; B. Methods for approximate Bayesian inference; C. Gradients; D. Annotated bibliography of applications; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781108425780 |
ISBN-10: | 110842578X |
Sprache: | Englisch |
Ausstattung / Beilage: | HC gerader Rücken kaschiert |
Einband: | Gebunden |
Autor: | Garnett, Roman |
Hersteller: | Cambridge University Press |
Maße: | 260 x 208 x 25 mm |
Von/Mit: | Roman Garnett |
Erscheinungsdatum: | 09.02.2023 |
Gewicht: | 1,029 kg |
Über den Autor
Roman Garnett is Associate Professor at Washington University in St. Louis. He has been a leader in the Bayesian optimization community since 2011, when he co-founded a long-running workshop on the subject at the NeurIPS conference. His research focus is developing Bayesian methods - including Bayesian optimization - for automating scientific discovery, an effort supported by an NSF CAREER award.
Inhaltsverzeichnis
Notation; 1. Introduction; 2. Gaussian processes; 3. Modeling with Gaussian processes; 4. Model assessment, selection, and averaging; 5. Decision theory for optimization; 6. Utility functions for optimization; 7. Common Bayesian optimization policies; 8. Computing policies with Gaussian processes; 9. Implementation; 10. Theoretical analysis; 11. Extensions and related settings; 12. A brief history of Bayesian optimization; A. The Gaussian distribution; B. Methods for approximate Bayesian inference; C. Gradients; D. Annotated bibliography of applications; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781108425780 |
ISBN-10: | 110842578X |
Sprache: | Englisch |
Ausstattung / Beilage: | HC gerader Rücken kaschiert |
Einband: | Gebunden |
Autor: | Garnett, Roman |
Hersteller: | Cambridge University Press |
Maße: | 260 x 208 x 25 mm |
Von/Mit: | Roman Garnett |
Erscheinungsdatum: | 09.02.2023 |
Gewicht: | 1,029 kg |
Warnhinweis