Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
63,85 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Noch keine Beschreibung vorhanden. Sollten Sie Fragen zu dem Artikel haben, helfen wir Ihnen gerne weiter.
Über den Autor
Tor Lattimore is a research scientist at DeepMind. His research is focused on decision making in the face of uncertainty, including bandit algorithms and reinforcement learning. Before joining DeepMind he was an assistant professor at Indiana University and a postdoctoral fellow at the University of Alberta.
Inhaltsverzeichnis
1. Introduction; 2. Foundations of probability; 3. Stochastic processes and Markov chains; 4. Finite-armed stochastic bandits; 5. Concentration of measure; 6. The explore-then-commit algorithm; 7. The upper confidence bound algorithm; 8. The upper confidence bound algorithm: asymptotic optimality; 9. The upper confidence bound algorithm: minimax optimality; 10. The upper confidence bound algorithm: Bernoulli noise; 11. The Exp3 algorithm; 12. The Exp3-IX algorithm; 13. Lower bounds: basic ideas; 14. Foundations of information theory; 15. Minimax lower bounds; 16. Asymptotic and instance dependent lower bounds; 17. High probability lower bounds; 18. Contextual bandits; 19. Stochastic linear bandits; 20. Confidence bounds for least squares estimators; 21. Optimal design for least squares estimators; 22. Stochastic linear bandits with finitely many arms; 23. Stochastic linear bandits with sparsity; 24. Minimax lower bounds for stochastic linear bandits; 25. Asymptotic lower bounds for stochastic linear bandits; 26. Foundations of convex analysis; 27. Exp3 for adversarial linear bandits; 28. Follow the regularized leader and mirror descent; 29. The relation between adversarial and stochastic linear bandits; 30. Combinatorial bandits; 31. Non-stationary bandits; 32. Ranking; 33. Pure exploration; 34. Foundations of Bayesian learning; 35. Bayesian bandits; 36. Thompson sampling; 37. Partial monitoring; 38. Markov decision processes.
Details
Erscheinungsjahr: | 2020 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781108486828 |
ISBN-10: | 1108486827 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Lattimore, Tor
Szepesvári, Csaba |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 176 x 247 x 36 mm |
Von/Mit: | Tor Lattimore (u. a.) |
Erscheinungsdatum: | 10.09.2020 |
Gewicht: | 1,028 kg |
Über den Autor
Tor Lattimore is a research scientist at DeepMind. His research is focused on decision making in the face of uncertainty, including bandit algorithms and reinforcement learning. Before joining DeepMind he was an assistant professor at Indiana University and a postdoctoral fellow at the University of Alberta.
Inhaltsverzeichnis
1. Introduction; 2. Foundations of probability; 3. Stochastic processes and Markov chains; 4. Finite-armed stochastic bandits; 5. Concentration of measure; 6. The explore-then-commit algorithm; 7. The upper confidence bound algorithm; 8. The upper confidence bound algorithm: asymptotic optimality; 9. The upper confidence bound algorithm: minimax optimality; 10. The upper confidence bound algorithm: Bernoulli noise; 11. The Exp3 algorithm; 12. The Exp3-IX algorithm; 13. Lower bounds: basic ideas; 14. Foundations of information theory; 15. Minimax lower bounds; 16. Asymptotic and instance dependent lower bounds; 17. High probability lower bounds; 18. Contextual bandits; 19. Stochastic linear bandits; 20. Confidence bounds for least squares estimators; 21. Optimal design for least squares estimators; 22. Stochastic linear bandits with finitely many arms; 23. Stochastic linear bandits with sparsity; 24. Minimax lower bounds for stochastic linear bandits; 25. Asymptotic lower bounds for stochastic linear bandits; 26. Foundations of convex analysis; 27. Exp3 for adversarial linear bandits; 28. Follow the regularized leader and mirror descent; 29. The relation between adversarial and stochastic linear bandits; 30. Combinatorial bandits; 31. Non-stationary bandits; 32. Ranking; 33. Pure exploration; 34. Foundations of Bayesian learning; 35. Bayesian bandits; 36. Thompson sampling; 37. Partial monitoring; 38. Markov decision processes.
Details
Erscheinungsjahr: | 2020 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781108486828 |
ISBN-10: | 1108486827 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Lattimore, Tor
Szepesvári, Csaba |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 176 x 247 x 36 mm |
Von/Mit: | Tor Lattimore (u. a.) |
Erscheinungsdatum: | 10.09.2020 |
Gewicht: | 1,028 kg |
Sicherheitshinweis