Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
37,40 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.
Zusammenfassung
Includes supplementary material: [...]
Inhaltsverzeichnis
Introduction: Motivations from Geometry.- Gamma and Beta Measures.- Markov Chains.- Real Beta Chain and q-Interpolation.- Ladder Structure.- q-Interpolation of Local Tate Thesis.- Pure Basis and Semi-Group.- Higher Dimensional Theory.- Real Grassmann Manifold.- p-Adic Grassmann Manifold.- q-Grassmann Manifold.- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.
Details
Erscheinungsjahr: | 2008 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Lecture Notes in Mathematics |
Inhalt: |
xii
222 S. 23 s/w Illustr. 222 p. 23 illus. |
ISBN-13: | 9783540783787 |
ISBN-10: | 3540783784 |
Sprache: | Englisch |
Herstellernummer: | 12231904 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Haran, Shai M. J. |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg Lecture Notes in Mathematics |
Maße: | 235 x 155 x 13 mm |
Von/Mit: | Shai M. J. Haran |
Erscheinungsdatum: | 02.05.2008 |
Gewicht: | 0,365 kg |
Zusammenfassung
Includes supplementary material: [...]
Inhaltsverzeichnis
Introduction: Motivations from Geometry.- Gamma and Beta Measures.- Markov Chains.- Real Beta Chain and q-Interpolation.- Ladder Structure.- q-Interpolation of Local Tate Thesis.- Pure Basis and Semi-Group.- Higher Dimensional Theory.- Real Grassmann Manifold.- p-Adic Grassmann Manifold.- q-Grassmann Manifold.- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.
Details
Erscheinungsjahr: | 2008 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Lecture Notes in Mathematics |
Inhalt: |
xii
222 S. 23 s/w Illustr. 222 p. 23 illus. |
ISBN-13: | 9783540783787 |
ISBN-10: | 3540783784 |
Sprache: | Englisch |
Herstellernummer: | 12231904 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Haran, Shai M. J. |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg Lecture Notes in Mathematics |
Maße: | 235 x 155 x 13 mm |
Von/Mit: | Shai M. J. Haran |
Erscheinungsdatum: | 02.05.2008 |
Gewicht: | 0,365 kg |
Warnhinweis