Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Analytical Chemistry
A Toolkit for Scientists and Laboratory Technicians
Buch von Bryan M Ham (u. a.)
Sprache: Englisch

156,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung

Detailed reference covering all aspects of working in laboratories, including safety, fundamentals of analytical techniques, lab instrumentation, and more

A comprehensive study of analytical chemistry as it pertains to the laboratory analyst and chemist, Analytical Chemistry begins with an introduction to the laboratory environment, including safety, glassware, common apparatuses, and lab basics, and continues on to guide readers through the fundamentals of analytical techniques, such as spectroscopy and chromatography, and introduce examples of laboratory programs, such as Laboratory Information Management Systems (LIMS).

This newly updated and revised Second Edition of Analytical Chemistry offers expanded chapters with new figures and the latest developments in the field.

Included alongside this new edition is an updated companion teaching, reference, and toolkit program called ChemTech. Conveniently available via either app or browser, the ChemTech program contains exercises that highlight and review topics covered in the book and features useful calculators and programs, including solution makers, graphing tools, and more. To aid in reader comprehension, the program also includes an interactive periodic table and chapter summaries.

Written by two highly qualified authors with significant experience in both practice and academia, Analytical Chemistry covers sample topics such as:

  • Basic mathematics in the laboratory, including different units, the metric system, significant figures, scientific calculators, and ChemTech conversion tools
  • Analytical data treatment, including errors in the laboratory, precision versus accuracy, normal distribution curves, and determining errors in methodology
  • Plotting and graphing, including graph construction, curve fitting, graphs of specific equations, least-squares method, and computer-generated curves
  • Ultraviolet/visible (UV/Vis) spectroscopy, including wave and particle theory of light, light absorption transitions, the color wheel, and pigments

With complete coverage of the practical aspects of analytical chemistry, Analytical Chemistry prepares students for a rewarding career as a chemist or a laboratory technician. Thanks to ChemTech integration, the book is also a useful and accessible reference for the established chemist or technician already working in the laboratory.

Detailed reference covering all aspects of working in laboratories, including safety, fundamentals of analytical techniques, lab instrumentation, and more

A comprehensive study of analytical chemistry as it pertains to the laboratory analyst and chemist, Analytical Chemistry begins with an introduction to the laboratory environment, including safety, glassware, common apparatuses, and lab basics, and continues on to guide readers through the fundamentals of analytical techniques, such as spectroscopy and chromatography, and introduce examples of laboratory programs, such as Laboratory Information Management Systems (LIMS).

This newly updated and revised Second Edition of Analytical Chemistry offers expanded chapters with new figures and the latest developments in the field.

Included alongside this new edition is an updated companion teaching, reference, and toolkit program called ChemTech. Conveniently available via either app or browser, the ChemTech program contains exercises that highlight and review topics covered in the book and features useful calculators and programs, including solution makers, graphing tools, and more. To aid in reader comprehension, the program also includes an interactive periodic table and chapter summaries.

Written by two highly qualified authors with significant experience in both practice and academia, Analytical Chemistry covers sample topics such as:

  • Basic mathematics in the laboratory, including different units, the metric system, significant figures, scientific calculators, and ChemTech conversion tools
  • Analytical data treatment, including errors in the laboratory, precision versus accuracy, normal distribution curves, and determining errors in methodology
  • Plotting and graphing, including graph construction, curve fitting, graphs of specific equations, least-squares method, and computer-generated curves
  • Ultraviolet/visible (UV/Vis) spectroscopy, including wave and particle theory of light, light absorption transitions, the color wheel, and pigments

With complete coverage of the practical aspects of analytical chemistry, Analytical Chemistry prepares students for a rewarding career as a chemist or a laboratory technician. Thanks to ChemTech integration, the book is also a useful and accessible reference for the established chemist or technician already working in the laboratory.

Über den Autor
Bryan M. Ham, PhD, has worked in analytical chemistry laboratories for more than 25 years. He is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection Office of Trade Headquarters in Washington D.C.

Aihui MaHam, PhD, is an expert in nano-materials including the synthesis and characterization of chemical and biological nano-sensors. She is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection Office of Trade Headquarters in Washington D.C.
Inhaltsverzeichnis
About the Authors xxiii

Preface xxv

Acknowledgments xxvii

About the Companion Website xxviii

1 Chemist and Technician in the Analytical Laboratory 1

1.1 Introduction--The Analytical Chemist and Technician 1

1.2 Today's Laboratory Chemist and Technician 1

1.3 ChemTech--The Chemist and Technician Toolkit Companion 2

1.4 Chapter Layout 2

1.5 Users of ChemTech 6

2 Introduction to the Analytical Laboratory 7

2.1 Introduction to the Laboratory 7

2.2 Laboratory Glassware 7

2.3 Conclusion 18

3 Laboratory Safety 19

3.1 Introduction 19

3.2 Proper Personal Protection and Appropriate Attire 19

3.3 Proper Shoes and Pants 20

3.4 Laboratory Gloves 20

3.5 General Rules to Use Gloves 22

3.6 Safety Data Sheet (SDS) 22

3.7 Emergency Eyewash and Face Wash Stations 24

3.8 Emergency Safety Showers 25

3.9 Fire Extinguishers 25

3.10 Clothing Fire in The Laboratory 26

3.11 Spill Cleanup Kits 26

3.12 Chemicals and Solvents 27

3.13 First Aid Kits 29

3.14 Gasses and Cylinders 29

3.15 Sharps Containers and Broken Glass Boxes 30

3.16 Occupational Safety and Health Administration (OSHA) 30

4 Basic Mathematics in the Laboratory 83

4.1 Introduction to Basic Math 83

4.2 Units and Metric System 83

4.3 Significant Figures 84

4.4 Scientific Calculators 86

4.5 ChemTech Conversion Tool 89

4.6 Chapter Key Concepts 96

4.7 Chapter Problems 96

5 Analytical Data Treatment (Statistics) 97

5.1 Errors in the Laboratory 97

5.2 Expressing Absolute and Relative Errors 98

5.3 Precision 98

5.4 The Normal Distribution Curve 98

5.5 Precision of Experimental Data 100

5.6 Normal Distribution Curve of a Sample 101

5.7 ChemTech Statistical Calculations 102

5.8 Student's Distribution t Test for Confidence Limits 105

5.9 Tests of Significance 111

5.10 Treatment of Data Outliers 112

5.11 Chapter Key Concepts 114

5.12 Chapter Problems 114

6 Plotting and Graphing 116

6.1 Introduction to Graphing 116

6.2 Graph Construction 116

6.3 Rectangular Cartesian Coordinate System 117

6.4 Curve Fitting 117

6.5 Redrawn Graph Example 117

6.6 Graphs of Equations 118

6.7 Least-Squares Method 121

6.8 Computer-Generated Curves 122

6.9 Calculating Concentrations 125

6.10 Nonlinear Curve Fitting 126

6.11 Chapter Key Concepts 130

6.12 Chapter Problems 130

7 Using Microsoft Excel(r) in the Laboratory 132

7.1 Introduction to Excel(r) 132

7.2 Opening Excel in ChemTech 132

7.3 The Excel Spreadsheet 132

7.4 Graphing in Excel 134

7.5 Complex Charting in Excel 137

7.6 Statistical Analysis using Excel 139

8 Making Laboratory Solutions 151

8.1 Introduction 151

8.2 Laboratory Reagent Fundamentals 151

8.3 The Periodic Table 151

8.4 Calculating Formula Weights 152

8.5 Calculating The Mole 152

8.6 Molecular Weight Calculator 152

8.7 Expressing Concentration 153

8.8 The Parts PER (PP) Notation 157

8.9 Computer-Based Solution Calculations 157

8.10 Reactions in Solution 161

8.11 Chapter Key Concepts 161

8.12 Chapter Problems 162

9 Acid-Base Theory and Buffer Solutions 163

9.1 Introduction 163

9.2 Acids and Bases in Everyday Life 163

9.3 The Litmus Test 163

9.4 Early Acid-Base Descriptions 164

9.5 Brÿnsted-Lowry Definition 164

9.6 The Equilibrium Constant 165

9.7 The Acid Ionization Constant 165

9.8 Calculating the Hydrogen Ion Concentration 165

9.9 The Base Ionization Constant 167

9.10 Ion Product for Water 168

9.11 The Solubility Product Constant (K SP) 168

9.12 The pH of a Solution 170

9.13 Measuring the pH 171

9.14 Buffered Solutions--Description and Preparing 172

9.15 ChemTech Buffer Solution Calculator 174

9.16 Chapter Key Concepts 175

9.17 Chapter Problems 175

10 Titration--A Volumetric Method of Analysis 178

10.1 Introduction 178

10.2 Reacting Ratios 178

10.3 The Equivalence Point 179

10.4 Useful Relationships for Calculations 179

10.5 Deriving the Titration Equation 179

10.6 Titrations in ChemTech 180

10.7 Acid/Base Titration Endpoint (Equivalence Point) 181

10.8 Acid/Base Titration Midpoint 182

10.9 Acid/Base Titration Indicators 182

10.10 Titrations Using Normal Solutions 184

10.11 Polyprotic Acid Titration 184

10.12 ChemTech Calculation of Normal Titrations 185

10.13 Performing a Titration 185

10.14 Primary Standards 186

10.15 Standardization of Sodium Hydroxide 187

10.16 Conductometric Titrations (Nonaqueous Solutions) 189

10.17 Precipitation Titration (MOHR Method for Halides) 190

10.18 Complex Formation with Back Titration (Volhard Method for Anions) 191

10.19 Chapter Key Concepts 196

10.20 Chapter Problems 197

11 Oxidation-Reduction (Redox) Reactions 199

11.1 Introduction 199

11.2 Oxidation and Reduction 199

11.3 The Volt 200

11.4 The Electrochemical Cell 200

11.5 Redox Reaction Conventions 200

11.6 The Nernst Equation 202

11.7 Determining Redox Titration Endpoints 203

11.8 Potentiometric Titrations 204

11.9 Visual Indicators used in Redox Titrations 206

11.10 Pretitration Oxidation-Reduction 207

11.11 Ion-Selective Electrodes 207

11.12 Chapter Key Concepts 207

11.13 Chapter Problems 209

12 Laboratory Information Management System (LIMS) 211

12.1 Introduction 211

12.2 Lims Main Menu 211

12.3 Logging in Samples 213

12.4 Entering Test Results 213

12.5 Add or Delete Tests 214

12.6 Calculations and Curves 214

12.7 Search Wizards 215

12.8 Approving Samples 217

12.9 Printing Sample Reports 217

13 Ultraviolet and Visible (UV/VIS) Spectroscopy 227

13.1 Introduction to Spectroscopy in the Analytical Laboratory 227

13.2 The Electromagnetic Spectrum 227

13.3 Ultraviolet/Visible (UV/VIS) Spectroscopy 227

13.4 UV/Visible Spectrophotometers 236

13.5 Special Topic (Example)--Spectrophotometric Study of Dye Compounds 237

13.6 Chapter Key Concepts 240

13.7 Chapter Problems 242

14 Fluorescence Optical Emission Spectroscopy 244

14.1 Introduction to Fluorescence 244

14.2 Fluorescence and Phosphorescence Theory 245

14.3 Phosphorescence 246

14.4 Excitation and Emission Spectra 247

14.5 Rate Constants 247

14.6 Quantum Yield Rate Constants 248

14.7 Decay Lifetimes 248

14.8 Factors Affecting Fluorescence 249

14.9 Quantitative Analysis and Beer-Lambert Law 252

14.10 Quenching of Fluorescence 253

14.11 Fluorometric Instrumentation 253

14.12 Special Topic--Fluorescence Study of Dye-A007 Complexes 259

14.13 Chapter Key Concepts 261

14.14 Chapter Problems 262

15 Fourier Transform Infrared (FTIR) Spectroscopy 264

15.1 Introduction 264

15.2 Basic IR Instrument Design 264

15.3 The Infrared Spectrum and Molecular Assignment 266

15.4 FTIR Table Band Assignments 267

15.5 FTIR Spectrum Example I 273

15.6 FTIR Spectrum Example II 273

15.7 FTIR Inorganic Compound Analysis 274

15.8 Chapter Key Concepts 274

15.9 Chapter Problems 276

16 Nuclear Magnetic Resonance (NMR) Spectroscopy 280

16.1 Introduction 280

16.2 Frequency and Magnetic Field Strength 280

16.3 Continuous-Wave NMR 281

16.4 The NMR Sample Probe 282

16.5 Pulsed-Field Fourier Transform NMR 282

16.6 Proton NMR Spectra Environmental Effects 284

16.7 Carbon-13 NMR 286

16.8 Special Topic--NMR Characterization of Cholesteryl Phosphate 290

16.9 Chapter Key Concepts 295

16.10 Chapter Problems 296

References 297

17 Atomic Absorption Spectroscopy (AAS) 298

17.1 Introduction 298

17.2 Atomic Absorption and Emission Process 298

17.3 Atomic Absorption and Emission Source 299

17.4 Source Gases and Flames 299

17.5 Block Diagram of AAS Instrumentation 299

17.6 The Light Source 301

17.7 Interferences in AAS 302

17.8 Electrothermal Atomization--Graphite Furnace 302

17.9 Instrumentation 303

17.10 Flame Atomic Absorption Analytical Methods 304

18 Atomic Emission Spectroscopy 306

18.1 Introduction 306

18.2 Elements in Periodic Table 306

18.3 The Plasma Torch 306

18.4 Sample Types 307

18.5 Sample Introduction 308

18.6 ICP-OES Instrumentation 308

18.7 ICP-OES Environmental Application Example 313

19 Atomic Mass Spectrometry 328

19.1 Introduction 328

19.2 Low-Resolution ICP-MS 328

19.3 High-Resolution ICP-MS 331

20 X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) 336

20.1 X-Ray Fluorescence Introduction 336

20.2 X-Ray Fluorescence Theory 336

20.3 Energy-Dispersive X-Ray Fluorescence (EDXRF) 337

20.4 Wavelength Dispersive X-Ray Fluorescence (WDXRF) 340

20.5 Applications of XRF 344

20.6 X-Ray Diffraction (XRD) 345

21 Chromatography--Introduction and Theory 354

21.1 Preface 354

21.2 Introduction to Chromatography 354
...
Details
Erscheinungsjahr: 2024
Fachbereich: Theoretische Chemie
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 688 S.
ISBN-13: 9781119894452
ISBN-10: 111989445X
Sprache: Englisch
Einband: Gebunden
Autor: Ham, Bryan M
Maham, Aihui
Auflage: 2nd edition
Hersteller: Wiley
Maße: 282 x 218 x 44 mm
Von/Mit: Bryan M Ham (u. a.)
Erscheinungsdatum: 12.03.2024
Gewicht: 2,109 kg
Artikel-ID: 126281335
Über den Autor
Bryan M. Ham, PhD, has worked in analytical chemistry laboratories for more than 25 years. He is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection Office of Trade Headquarters in Washington D.C.

Aihui MaHam, PhD, is an expert in nano-materials including the synthesis and characterization of chemical and biological nano-sensors. She is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection Office of Trade Headquarters in Washington D.C.
Inhaltsverzeichnis
About the Authors xxiii

Preface xxv

Acknowledgments xxvii

About the Companion Website xxviii

1 Chemist and Technician in the Analytical Laboratory 1

1.1 Introduction--The Analytical Chemist and Technician 1

1.2 Today's Laboratory Chemist and Technician 1

1.3 ChemTech--The Chemist and Technician Toolkit Companion 2

1.4 Chapter Layout 2

1.5 Users of ChemTech 6

2 Introduction to the Analytical Laboratory 7

2.1 Introduction to the Laboratory 7

2.2 Laboratory Glassware 7

2.3 Conclusion 18

3 Laboratory Safety 19

3.1 Introduction 19

3.2 Proper Personal Protection and Appropriate Attire 19

3.3 Proper Shoes and Pants 20

3.4 Laboratory Gloves 20

3.5 General Rules to Use Gloves 22

3.6 Safety Data Sheet (SDS) 22

3.7 Emergency Eyewash and Face Wash Stations 24

3.8 Emergency Safety Showers 25

3.9 Fire Extinguishers 25

3.10 Clothing Fire in The Laboratory 26

3.11 Spill Cleanup Kits 26

3.12 Chemicals and Solvents 27

3.13 First Aid Kits 29

3.14 Gasses and Cylinders 29

3.15 Sharps Containers and Broken Glass Boxes 30

3.16 Occupational Safety and Health Administration (OSHA) 30

4 Basic Mathematics in the Laboratory 83

4.1 Introduction to Basic Math 83

4.2 Units and Metric System 83

4.3 Significant Figures 84

4.4 Scientific Calculators 86

4.5 ChemTech Conversion Tool 89

4.6 Chapter Key Concepts 96

4.7 Chapter Problems 96

5 Analytical Data Treatment (Statistics) 97

5.1 Errors in the Laboratory 97

5.2 Expressing Absolute and Relative Errors 98

5.3 Precision 98

5.4 The Normal Distribution Curve 98

5.5 Precision of Experimental Data 100

5.6 Normal Distribution Curve of a Sample 101

5.7 ChemTech Statistical Calculations 102

5.8 Student's Distribution t Test for Confidence Limits 105

5.9 Tests of Significance 111

5.10 Treatment of Data Outliers 112

5.11 Chapter Key Concepts 114

5.12 Chapter Problems 114

6 Plotting and Graphing 116

6.1 Introduction to Graphing 116

6.2 Graph Construction 116

6.3 Rectangular Cartesian Coordinate System 117

6.4 Curve Fitting 117

6.5 Redrawn Graph Example 117

6.6 Graphs of Equations 118

6.7 Least-Squares Method 121

6.8 Computer-Generated Curves 122

6.9 Calculating Concentrations 125

6.10 Nonlinear Curve Fitting 126

6.11 Chapter Key Concepts 130

6.12 Chapter Problems 130

7 Using Microsoft Excel(r) in the Laboratory 132

7.1 Introduction to Excel(r) 132

7.2 Opening Excel in ChemTech 132

7.3 The Excel Spreadsheet 132

7.4 Graphing in Excel 134

7.5 Complex Charting in Excel 137

7.6 Statistical Analysis using Excel 139

8 Making Laboratory Solutions 151

8.1 Introduction 151

8.2 Laboratory Reagent Fundamentals 151

8.3 The Periodic Table 151

8.4 Calculating Formula Weights 152

8.5 Calculating The Mole 152

8.6 Molecular Weight Calculator 152

8.7 Expressing Concentration 153

8.8 The Parts PER (PP) Notation 157

8.9 Computer-Based Solution Calculations 157

8.10 Reactions in Solution 161

8.11 Chapter Key Concepts 161

8.12 Chapter Problems 162

9 Acid-Base Theory and Buffer Solutions 163

9.1 Introduction 163

9.2 Acids and Bases in Everyday Life 163

9.3 The Litmus Test 163

9.4 Early Acid-Base Descriptions 164

9.5 Brÿnsted-Lowry Definition 164

9.6 The Equilibrium Constant 165

9.7 The Acid Ionization Constant 165

9.8 Calculating the Hydrogen Ion Concentration 165

9.9 The Base Ionization Constant 167

9.10 Ion Product for Water 168

9.11 The Solubility Product Constant (K SP) 168

9.12 The pH of a Solution 170

9.13 Measuring the pH 171

9.14 Buffered Solutions--Description and Preparing 172

9.15 ChemTech Buffer Solution Calculator 174

9.16 Chapter Key Concepts 175

9.17 Chapter Problems 175

10 Titration--A Volumetric Method of Analysis 178

10.1 Introduction 178

10.2 Reacting Ratios 178

10.3 The Equivalence Point 179

10.4 Useful Relationships for Calculations 179

10.5 Deriving the Titration Equation 179

10.6 Titrations in ChemTech 180

10.7 Acid/Base Titration Endpoint (Equivalence Point) 181

10.8 Acid/Base Titration Midpoint 182

10.9 Acid/Base Titration Indicators 182

10.10 Titrations Using Normal Solutions 184

10.11 Polyprotic Acid Titration 184

10.12 ChemTech Calculation of Normal Titrations 185

10.13 Performing a Titration 185

10.14 Primary Standards 186

10.15 Standardization of Sodium Hydroxide 187

10.16 Conductometric Titrations (Nonaqueous Solutions) 189

10.17 Precipitation Titration (MOHR Method for Halides) 190

10.18 Complex Formation with Back Titration (Volhard Method for Anions) 191

10.19 Chapter Key Concepts 196

10.20 Chapter Problems 197

11 Oxidation-Reduction (Redox) Reactions 199

11.1 Introduction 199

11.2 Oxidation and Reduction 199

11.3 The Volt 200

11.4 The Electrochemical Cell 200

11.5 Redox Reaction Conventions 200

11.6 The Nernst Equation 202

11.7 Determining Redox Titration Endpoints 203

11.8 Potentiometric Titrations 204

11.9 Visual Indicators used in Redox Titrations 206

11.10 Pretitration Oxidation-Reduction 207

11.11 Ion-Selective Electrodes 207

11.12 Chapter Key Concepts 207

11.13 Chapter Problems 209

12 Laboratory Information Management System (LIMS) 211

12.1 Introduction 211

12.2 Lims Main Menu 211

12.3 Logging in Samples 213

12.4 Entering Test Results 213

12.5 Add or Delete Tests 214

12.6 Calculations and Curves 214

12.7 Search Wizards 215

12.8 Approving Samples 217

12.9 Printing Sample Reports 217

13 Ultraviolet and Visible (UV/VIS) Spectroscopy 227

13.1 Introduction to Spectroscopy in the Analytical Laboratory 227

13.2 The Electromagnetic Spectrum 227

13.3 Ultraviolet/Visible (UV/VIS) Spectroscopy 227

13.4 UV/Visible Spectrophotometers 236

13.5 Special Topic (Example)--Spectrophotometric Study of Dye Compounds 237

13.6 Chapter Key Concepts 240

13.7 Chapter Problems 242

14 Fluorescence Optical Emission Spectroscopy 244

14.1 Introduction to Fluorescence 244

14.2 Fluorescence and Phosphorescence Theory 245

14.3 Phosphorescence 246

14.4 Excitation and Emission Spectra 247

14.5 Rate Constants 247

14.6 Quantum Yield Rate Constants 248

14.7 Decay Lifetimes 248

14.8 Factors Affecting Fluorescence 249

14.9 Quantitative Analysis and Beer-Lambert Law 252

14.10 Quenching of Fluorescence 253

14.11 Fluorometric Instrumentation 253

14.12 Special Topic--Fluorescence Study of Dye-A007 Complexes 259

14.13 Chapter Key Concepts 261

14.14 Chapter Problems 262

15 Fourier Transform Infrared (FTIR) Spectroscopy 264

15.1 Introduction 264

15.2 Basic IR Instrument Design 264

15.3 The Infrared Spectrum and Molecular Assignment 266

15.4 FTIR Table Band Assignments 267

15.5 FTIR Spectrum Example I 273

15.6 FTIR Spectrum Example II 273

15.7 FTIR Inorganic Compound Analysis 274

15.8 Chapter Key Concepts 274

15.9 Chapter Problems 276

16 Nuclear Magnetic Resonance (NMR) Spectroscopy 280

16.1 Introduction 280

16.2 Frequency and Magnetic Field Strength 280

16.3 Continuous-Wave NMR 281

16.4 The NMR Sample Probe 282

16.5 Pulsed-Field Fourier Transform NMR 282

16.6 Proton NMR Spectra Environmental Effects 284

16.7 Carbon-13 NMR 286

16.8 Special Topic--NMR Characterization of Cholesteryl Phosphate 290

16.9 Chapter Key Concepts 295

16.10 Chapter Problems 296

References 297

17 Atomic Absorption Spectroscopy (AAS) 298

17.1 Introduction 298

17.2 Atomic Absorption and Emission Process 298

17.3 Atomic Absorption and Emission Source 299

17.4 Source Gases and Flames 299

17.5 Block Diagram of AAS Instrumentation 299

17.6 The Light Source 301

17.7 Interferences in AAS 302

17.8 Electrothermal Atomization--Graphite Furnace 302

17.9 Instrumentation 303

17.10 Flame Atomic Absorption Analytical Methods 304

18 Atomic Emission Spectroscopy 306

18.1 Introduction 306

18.2 Elements in Periodic Table 306

18.3 The Plasma Torch 306

18.4 Sample Types 307

18.5 Sample Introduction 308

18.6 ICP-OES Instrumentation 308

18.7 ICP-OES Environmental Application Example 313

19 Atomic Mass Spectrometry 328

19.1 Introduction 328

19.2 Low-Resolution ICP-MS 328

19.3 High-Resolution ICP-MS 331

20 X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) 336

20.1 X-Ray Fluorescence Introduction 336

20.2 X-Ray Fluorescence Theory 336

20.3 Energy-Dispersive X-Ray Fluorescence (EDXRF) 337

20.4 Wavelength Dispersive X-Ray Fluorescence (WDXRF) 340

20.5 Applications of XRF 344

20.6 X-Ray Diffraction (XRD) 345

21 Chromatography--Introduction and Theory 354

21.1 Preface 354

21.2 Introduction to Chromatography 354
...
Details
Erscheinungsjahr: 2024
Fachbereich: Theoretische Chemie
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 688 S.
ISBN-13: 9781119894452
ISBN-10: 111989445X
Sprache: Englisch
Einband: Gebunden
Autor: Ham, Bryan M
Maham, Aihui
Auflage: 2nd edition
Hersteller: Wiley
Maße: 282 x 218 x 44 mm
Von/Mit: Bryan M Ham (u. a.)
Erscheinungsdatum: 12.03.2024
Gewicht: 2,109 kg
Artikel-ID: 126281335
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte