Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern
Ein Leitfaden für Entscheider und Data Scientists
Taschenbuch von Tobias Bär
Sprache: Deutsch

24,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung

Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen, der verdorben zu sein scheint, nicht zu essen. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Mit der Entwicklung von Algorithmen und maschinellem Lernen wird zwar versucht, Voreingenommenheit zu beseitigen, aber schließlich werden sie doch von Menschen geschaffen und sind daher anfällig für das, was wir als algorithmische Voreingenommenheit bezeichnen.

In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, verwalten und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Voreingenommenheit spiegelt diese menschlichen Tendenzen wider und hat ihren Ursprung in ihnen.

Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt wird. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Ganz gleich, ob Sie eine erfahrene Führungskraft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind - jetzt ist ein entscheidender Zeitpunkt, um sich über die größeren soziologischen Auswirkungen von Verzerrungen im digitalen Zeitalter zu informieren.

Dieses Buch stellt die Übersetzung einer englischsprachigen Originalausgabe dar. Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz erstellt (maschinelle Übersetzung mit [...]). Eine anschließende manuelle Überarbeitung erfolgte vor allem nach inhaltlichen Gesichtspunkten, so dass das Buch stilistisch von einer herkömmlichen Übersetzung abweichen kann.

Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen, der verdorben zu sein scheint, nicht zu essen. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Mit der Entwicklung von Algorithmen und maschinellem Lernen wird zwar versucht, Voreingenommenheit zu beseitigen, aber schließlich werden sie doch von Menschen geschaffen und sind daher anfällig für das, was wir als algorithmische Voreingenommenheit bezeichnen.

In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, verwalten und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Voreingenommenheit spiegelt diese menschlichen Tendenzen wider und hat ihren Ursprung in ihnen.

Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt wird. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Ganz gleich, ob Sie eine erfahrene Führungskraft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind - jetzt ist ein entscheidender Zeitpunkt, um sich über die größeren soziologischen Auswirkungen von Verzerrungen im digitalen Zeitalter zu informieren.

Dieses Buch stellt die Übersetzung einer englischsprachigen Originalausgabe dar. Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz erstellt (maschinelle Übersetzung mit [...]). Eine anschließende manuelle Überarbeitung erfolgte vor allem nach inhaltlichen Gesichtspunkten, so dass das Buch stilistisch von einer herkömmlichen Übersetzung abweichen kann.

Über den Autor
Tobias Baer ist Datenwissenschaftler, Psychologe und Top-Management-Berater mit über 20 Jahren Erfahrung in der Risikoanalyse. Bis Juni 2018 war er Master-Experte und Partner bei McKinsey & Co. und baute dort 2004 das Risk Advanced Analytics Center of Competence von McKinsey in Indien auf, leitete die Credit Risk Advanced Analytics Service Line weltweit und betreute Kunden in über 50 Ländern zu Themen wie der Entwicklung analytischer Entscheidungsmodelle für das Underwriting von Krediten, die Preisgestaltung von Versicherungen und die Steuervollstreckung sowie zu Entlastungsentscheidungen. Tobias hat eine Forschungsagenda rund um Analytik und Entscheidungsfindung verfolgt, sowohl bei McKinsey (z.B. zur Entlastung von Urteilsentscheidungen und zur Nutzung von maschinellem Lernen zur Entwicklung hochtransparenter Vorhersagemodelle) als auch an der University of Cambridge, UK (z.B. die Auswirkung mentaler Ermüdung auf Entscheidungsvoreingenommenheit).
Tobias hat einen Doktortitel in Finanzwissenschaften von der Universität Frankfurt, einen MPhil in Psychologie von der Universität Cambridge, einen MA in Wirtschaftswissenschaften von der UWM und hat ein Grundstudium in Betriebswirtschaft und Jura an der Universität Gießen absolviert. Er begann bereits als Teenager, in einem deutschen Software-Magazin über Programmiertricks für den Commodore C64 zu schreiben, und bloggt nun regelmäßig auf seiner LinkedIn-Seite.
Zusammenfassung

Bietet praktische, bewährte Techniken zur wirksamen Bekämpfung und Beseitigung von Vorurteilen

Behandelt grundlegende Konzepte der statistischen Datenerhebungen und erleichtert deren Auswertung

Erörtert die Auswirkungen von Voreingenommenheit auf die Gesellschaft und mögliche rechtliche Folgen

Inhaltsverzeichnis
Teil I: Eine Einführung in Vorurteile und Algorithmen.- Kapitel 1: Einführung.- Kapitel 2: Vorurteile in der menschlichen Entscheidungsfindung.- Kapitel 3: Wie Algorithmen Entscheidungen verfälschen.- Kapitel 4: Der Modellentwicklungsprozess.- Kapitel 5: Maschinelles Lernen in Kürze.- Teil II: Woher kommen die Vorurteile von Algorithmen?.- Kapitel 6: Wie Vorurteile der realen Welt von Algorithmen gespiegelt werden.- Kapitel 7: Die Voreingenommenheit von Datenwissenschaftlern.- Kapitel 8: Wie Daten Voreingenommenheit einführen können.- Kapitel 9: Die Stabilitätsvoreingenommenheit von Algorithmen.- Kapitel 10: Voreingenommenheit durch den Algorithmus selbst.- Kapitel 11: Algorithmische Voreingenommenheit und soziale Medien.- Teil III: Was man aus Sicht der Nutzer gegen algorithmische Voreingenommenheit tun kann.- Kapitel 12: Optionen für die Entscheidungsfindung.- Kapitel 13: Bewertung des Risikos algorithmischer Verzerrungen.- Kapitel 14: Wie man Algorithmen sicher einsetzt.- Kapitel 15: Wie man algorithmische Verzerrungen erkennt.- Kapitel 16: Managementstrategien zur Korrektur algorithmischer Verzerrungen.- Kapitel 17: Wie man unverzerrte Daten generiert.- Teil IV: Was man gegen algorithmische Verzerrungen aus der Sicht eines Datenwissenschaftlers tun kann.- Kapitel 18: Die Rolle des Datenwissenschaftlers bei der Überwindung algorithmischer Verzerrungen.- Kapitel 19: Eine Röntgenuntersuchung Ihrer Daten.- Kapitel 20: Wann maschinelles Lernen eingesetzt werden sollte.- Kapitel 21: Wie maschinelles Lernen mit traditionellen Methoden kombiniert werden kann.- Kapitel 22: Wie Verzerrungen in selbstverbessernden Modellen verhindert werden können.- Kapitel 23: Wie Debiasing institutionalisiert werden kann.
Details
Erscheinungsjahr: 2023
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiv
286 S.
1 s/w Illustr.
286 S. 1 Abb.
ISBN-13: 9783662663141
ISBN-10: 3662663147
Sprache: Deutsch
Herstellernummer: 978-3-662-66314-1
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bär, Tobias
Auflage: 1. Aufl. 2022
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Maße: 235 x 155 x 17 mm
Von/Mit: Tobias Bär
Erscheinungsdatum: 02.01.2023
Gewicht: 0,458 kg
Artikel-ID: 124774730
Über den Autor
Tobias Baer ist Datenwissenschaftler, Psychologe und Top-Management-Berater mit über 20 Jahren Erfahrung in der Risikoanalyse. Bis Juni 2018 war er Master-Experte und Partner bei McKinsey & Co. und baute dort 2004 das Risk Advanced Analytics Center of Competence von McKinsey in Indien auf, leitete die Credit Risk Advanced Analytics Service Line weltweit und betreute Kunden in über 50 Ländern zu Themen wie der Entwicklung analytischer Entscheidungsmodelle für das Underwriting von Krediten, die Preisgestaltung von Versicherungen und die Steuervollstreckung sowie zu Entlastungsentscheidungen. Tobias hat eine Forschungsagenda rund um Analytik und Entscheidungsfindung verfolgt, sowohl bei McKinsey (z.B. zur Entlastung von Urteilsentscheidungen und zur Nutzung von maschinellem Lernen zur Entwicklung hochtransparenter Vorhersagemodelle) als auch an der University of Cambridge, UK (z.B. die Auswirkung mentaler Ermüdung auf Entscheidungsvoreingenommenheit).
Tobias hat einen Doktortitel in Finanzwissenschaften von der Universität Frankfurt, einen MPhil in Psychologie von der Universität Cambridge, einen MA in Wirtschaftswissenschaften von der UWM und hat ein Grundstudium in Betriebswirtschaft und Jura an der Universität Gießen absolviert. Er begann bereits als Teenager, in einem deutschen Software-Magazin über Programmiertricks für den Commodore C64 zu schreiben, und bloggt nun regelmäßig auf seiner LinkedIn-Seite.
Zusammenfassung

Bietet praktische, bewährte Techniken zur wirksamen Bekämpfung und Beseitigung von Vorurteilen

Behandelt grundlegende Konzepte der statistischen Datenerhebungen und erleichtert deren Auswertung

Erörtert die Auswirkungen von Voreingenommenheit auf die Gesellschaft und mögliche rechtliche Folgen

Inhaltsverzeichnis
Teil I: Eine Einführung in Vorurteile und Algorithmen.- Kapitel 1: Einführung.- Kapitel 2: Vorurteile in der menschlichen Entscheidungsfindung.- Kapitel 3: Wie Algorithmen Entscheidungen verfälschen.- Kapitel 4: Der Modellentwicklungsprozess.- Kapitel 5: Maschinelles Lernen in Kürze.- Teil II: Woher kommen die Vorurteile von Algorithmen?.- Kapitel 6: Wie Vorurteile der realen Welt von Algorithmen gespiegelt werden.- Kapitel 7: Die Voreingenommenheit von Datenwissenschaftlern.- Kapitel 8: Wie Daten Voreingenommenheit einführen können.- Kapitel 9: Die Stabilitätsvoreingenommenheit von Algorithmen.- Kapitel 10: Voreingenommenheit durch den Algorithmus selbst.- Kapitel 11: Algorithmische Voreingenommenheit und soziale Medien.- Teil III: Was man aus Sicht der Nutzer gegen algorithmische Voreingenommenheit tun kann.- Kapitel 12: Optionen für die Entscheidungsfindung.- Kapitel 13: Bewertung des Risikos algorithmischer Verzerrungen.- Kapitel 14: Wie man Algorithmen sicher einsetzt.- Kapitel 15: Wie man algorithmische Verzerrungen erkennt.- Kapitel 16: Managementstrategien zur Korrektur algorithmischer Verzerrungen.- Kapitel 17: Wie man unverzerrte Daten generiert.- Teil IV: Was man gegen algorithmische Verzerrungen aus der Sicht eines Datenwissenschaftlers tun kann.- Kapitel 18: Die Rolle des Datenwissenschaftlers bei der Überwindung algorithmischer Verzerrungen.- Kapitel 19: Eine Röntgenuntersuchung Ihrer Daten.- Kapitel 20: Wann maschinelles Lernen eingesetzt werden sollte.- Kapitel 21: Wie maschinelles Lernen mit traditionellen Methoden kombiniert werden kann.- Kapitel 22: Wie Verzerrungen in selbstverbessernden Modellen verhindert werden können.- Kapitel 23: Wie Debiasing institutionalisiert werden kann.
Details
Erscheinungsjahr: 2023
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiv
286 S.
1 s/w Illustr.
286 S. 1 Abb.
ISBN-13: 9783662663141
ISBN-10: 3662663147
Sprache: Deutsch
Herstellernummer: 978-3-662-66314-1
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bär, Tobias
Auflage: 1. Aufl. 2022
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Maße: 235 x 155 x 17 mm
Von/Mit: Tobias Bär
Erscheinungsdatum: 02.01.2023
Gewicht: 0,458 kg
Artikel-ID: 124774730
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte