29,90 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Algorithmen gehören zum Rüstzeug guter Entwickler. In diesem Buch lernen Sie eine große Menge problemlösender Techniken kennen und erfahren, wie Sie diese in Anwendungen implementieren. Die Spannbreite reicht von einfachen Algorithmen zur Verschlüsselung und für die Suche bis hin zu genetischen Algorithmen, k-Means-Algorithmen und neuronalen Netzen. Unter den zu lösenden Aufgaben finden Sie sowohl Informatik-Klassiker wie das Damenproblem und das Flussüberquerungsrätsel als auch neue Aufgaben. Selbst wenn Ihnen einiges bekannt vorkommen wird, werden Sie am Ende sagen: "Ach so macht man das!" Dass Python hier die Sprache der Wahl ist, schließt niemanden aus. Von diesem Programmiertraining profitieren Sie auch dann, wenn Sie sonst eher in Java, C++ oder einer anderen Sprache programmieren. Die gekonnte Auswahl der Beispiele und der flotte Schreibstil sorgen dafür, dass das Ganze nicht nur lehrreich, sondern auch unterhaltsam ist.
Aus dem Inhalt:
- Die Fibonacci-Folge, einfache Komprimierung, unknackbare Verschlüsselung, Pi berechnen
- DNS durchsuchen, Wege durchs Labyrinth, Flussüberquerungsrätsel
- Damenproblem, Vier-Farben-Satz, Wortsuchrätsel
- grafische Algorithmen
- genetische Algorithmen
- k-Means-Algorithmen
- einfache neuronale Netze
- Tic-tac-toe, Vier gewinnt
- Das Rucksackproblem, Das Problem des Handlungsreisenden
- und außerdem: zahlreiche Code-Beispiele in Python, Hinweise zum Einsatz der Algorithmen, Übungen und Tipps für die Programmier-Praxis
Algorithmen gehören zum Rüstzeug guter Entwickler. In diesem Buch lernen Sie eine große Menge problemlösender Techniken kennen und erfahren, wie Sie diese in Anwendungen implementieren. Die Spannbreite reicht von einfachen Algorithmen zur Verschlüsselung und für die Suche bis hin zu genetischen Algorithmen, k-Means-Algorithmen und neuronalen Netzen. Unter den zu lösenden Aufgaben finden Sie sowohl Informatik-Klassiker wie das Damenproblem und das Flussüberquerungsrätsel als auch neue Aufgaben. Selbst wenn Ihnen einiges bekannt vorkommen wird, werden Sie am Ende sagen: "Ach so macht man das!" Dass Python hier die Sprache der Wahl ist, schließt niemanden aus. Von diesem Programmiertraining profitieren Sie auch dann, wenn Sie sonst eher in Java, C++ oder einer anderen Sprache programmieren. Die gekonnte Auswahl der Beispiele und der flotte Schreibstil sorgen dafür, dass das Ganze nicht nur lehrreich, sondern auch unterhaltsam ist.
Aus dem Inhalt:
- Die Fibonacci-Folge, einfache Komprimierung, unknackbare Verschlüsselung, Pi berechnen
- DNS durchsuchen, Wege durchs Labyrinth, Flussüberquerungsrätsel
- Damenproblem, Vier-Farben-Satz, Wortsuchrätsel
- grafische Algorithmen
- genetische Algorithmen
- k-Means-Algorithmen
- einfache neuronale Netze
- Tic-tac-toe, Vier gewinnt
- Das Rucksackproblem, Das Problem des Handlungsreisenden
- und außerdem: zahlreiche Code-Beispiele in Python, Hinweise zum Einsatz der Algorithmen, Übungen und Tipps für die Programmier-Praxis
Einleitung ... 17
1. Kleine Aufgaben ... 25
1.1 ... Die Fibonacci-Folge ... 25
1.2 ... Triviale Komprimierung ... 32
1.3 ... Unknackbare Verschlüsselung ... 38
1.4 ... Pi berechnen ... 41
1.5 ... Die Türme von Hanoi ... 43
1.6 ... Anwendungen im Alltag ... 47
1.7 ... Übungsaufgaben ... 48
2. Suchaufgaben ... 49
2.1 ... DNA-Suche ... 49
2.2 ... Labyrinthe lösen ... 57
2.3 ... Missionare und Kannibalen ... 77
2.4 ... Anwendungen im Alltag ... 82
2.5 ... Übungsaufgaben ... 83
3. Bedingungserfüllungsprobleme ... 85
3.1 ... Ein Framework für Bedingungserfüllungsprobleme schreiben ... 86
3.2 ... Die Landkarte Australiens einfärben ... 91
3.3 ... Das Acht-Damen-Problem ... 94
3.4 ... Wortsuche ... 97
3.5 ... SEND+MORE=MONEY ... 101
3.6 ... Leiterplatten-Layout ... 103
3.7 ... Anwendungen im Alltag ... 104
3.8 ... Übungsaufgaben ... 105
4. Graphenprobleme ... 107
4.1 ... Eine Landkarte als Graph ... 107
4.2 ... Ein Framework für Graphen schreiben ... 110
4.3 ... Den kürzesten Pfad finden ... 116
4.4 ... Die Kosten für den Aufbau des Netzwerks minimieren ... 119
4.5 ... Den kürzesten Pfad in einem gewichteten Graphen finden ... 132
4.6 ... Anwendungen im Alltag ... 138
4.7 ... Übungsaufgaben ... 139
5. Genetische Algorithmen ... 141
5.1 ... Biologischer Hintergrund ... 141
5.2 ... Ein generischer genetischer Algorithmus ... 143
5.3 ... Ein naiver Test ... 151
5.4 ... Wiedersehen mit SEND+MORE=MONEY ... 154
5.5 ... Listenkomprimierung optimieren ... 158
5.6 ... Kritik an genetischen Algorithmen ... 160
5.7 ... Anwendungen im Alltag ... 162
5.8 ... Übungsaufgaben ... 163
6. k-Means-Clustering ... 165
6.1 ... Vorbereitungen ... 165
6.2 ... Der k-Means-Clustering-Algorithmus ... 168
6.3 ... Gouverneure nach Alter und Längengrad clustern ... 174
6.4 ... Michael-Jackson-Alben nach Länge clustern ... 179
6.5 ... K-Means-Clustering-Probleme und -Erweiterungen ... 181
6.6 ... Anwendungen im Alltag ... 182
6.7 ... Übungsaufgaben ... 183
7. Einfache neuronale Netzwerke ... 185
7.1 ... Biologische Grundlagen? ... 186
7.2 ... Künstliche neuronale Netzwerke ... 187
7.3 ... Vorbereitungen ... 195
7.4 ... Das Netzwerk aufbauen ... 197
7.5 ... Klassifikationsprobleme ... 204
7.6 ... Neuronale Netzwerke beschleunigen ... 213
7.7 ... Probleme und Erweiterungen neuronaler Netzwerke ... 214
7.8 ... Anwendungen im Alltag ... 215
7.9 ... Übungsaufgaben ... 217
8. Adversarial Search ... 219
8.1 ... Grundkomponenten von Brettspielen ... 219
8.2 ... Tic Tac Toe ... 221
8.3 ... Vier gewinnt ... 231
8.4 ... Minimax-Verbesserungen über die Alpha-Beta-Suche hinaus ... 240
8.5 ... Anwendungen im Alltag ... 242
8.6 ... Übungsaufgaben ... 243
9. Sonstige Aufgaben ... 245
9.1 ... Das Rucksackproblem ... 245
9.2 ... Das Problem des Handlungsreisenden ... 251
9.3 ... Merkhilfen für Telefonnummern ... 257
9.4 ... Anwendungen im Alltag ... 260
9.5 ... Übungsaufgaben ... 261
Anhang ... 263
A ... Glossar ... 265
B ... Weitere Ressourcen ... 271
C ... Eine kurze Einführung in Type-Hints ... 277
Index ... 285
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Rheinwerk Computing |
Inhalt: | 292 S. |
ISBN-13: | 9783836277471 |
ISBN-10: | 3836277476 |
Sprache: | Deutsch |
Herstellernummer: | 459/07747 |
Einband: | Klappenbroschur |
Autor: | Kopec, David |
Hersteller: | Rheinwerk Verlag GmbH |
Maße: | 232 x 177 x 19 mm |
Von/Mit: | David Kopec |
Erscheinungsdatum: | 28.06.2020 |
Gewicht: | 0,552 kg |
Einleitung ... 17
1. Kleine Aufgaben ... 25
1.1 ... Die Fibonacci-Folge ... 25
1.2 ... Triviale Komprimierung ... 32
1.3 ... Unknackbare Verschlüsselung ... 38
1.4 ... Pi berechnen ... 41
1.5 ... Die Türme von Hanoi ... 43
1.6 ... Anwendungen im Alltag ... 47
1.7 ... Übungsaufgaben ... 48
2. Suchaufgaben ... 49
2.1 ... DNA-Suche ... 49
2.2 ... Labyrinthe lösen ... 57
2.3 ... Missionare und Kannibalen ... 77
2.4 ... Anwendungen im Alltag ... 82
2.5 ... Übungsaufgaben ... 83
3. Bedingungserfüllungsprobleme ... 85
3.1 ... Ein Framework für Bedingungserfüllungsprobleme schreiben ... 86
3.2 ... Die Landkarte Australiens einfärben ... 91
3.3 ... Das Acht-Damen-Problem ... 94
3.4 ... Wortsuche ... 97
3.5 ... SEND+MORE=MONEY ... 101
3.6 ... Leiterplatten-Layout ... 103
3.7 ... Anwendungen im Alltag ... 104
3.8 ... Übungsaufgaben ... 105
4. Graphenprobleme ... 107
4.1 ... Eine Landkarte als Graph ... 107
4.2 ... Ein Framework für Graphen schreiben ... 110
4.3 ... Den kürzesten Pfad finden ... 116
4.4 ... Die Kosten für den Aufbau des Netzwerks minimieren ... 119
4.5 ... Den kürzesten Pfad in einem gewichteten Graphen finden ... 132
4.6 ... Anwendungen im Alltag ... 138
4.7 ... Übungsaufgaben ... 139
5. Genetische Algorithmen ... 141
5.1 ... Biologischer Hintergrund ... 141
5.2 ... Ein generischer genetischer Algorithmus ... 143
5.3 ... Ein naiver Test ... 151
5.4 ... Wiedersehen mit SEND+MORE=MONEY ... 154
5.5 ... Listenkomprimierung optimieren ... 158
5.6 ... Kritik an genetischen Algorithmen ... 160
5.7 ... Anwendungen im Alltag ... 162
5.8 ... Übungsaufgaben ... 163
6. k-Means-Clustering ... 165
6.1 ... Vorbereitungen ... 165
6.2 ... Der k-Means-Clustering-Algorithmus ... 168
6.3 ... Gouverneure nach Alter und Längengrad clustern ... 174
6.4 ... Michael-Jackson-Alben nach Länge clustern ... 179
6.5 ... K-Means-Clustering-Probleme und -Erweiterungen ... 181
6.6 ... Anwendungen im Alltag ... 182
6.7 ... Übungsaufgaben ... 183
7. Einfache neuronale Netzwerke ... 185
7.1 ... Biologische Grundlagen? ... 186
7.2 ... Künstliche neuronale Netzwerke ... 187
7.3 ... Vorbereitungen ... 195
7.4 ... Das Netzwerk aufbauen ... 197
7.5 ... Klassifikationsprobleme ... 204
7.6 ... Neuronale Netzwerke beschleunigen ... 213
7.7 ... Probleme und Erweiterungen neuronaler Netzwerke ... 214
7.8 ... Anwendungen im Alltag ... 215
7.9 ... Übungsaufgaben ... 217
8. Adversarial Search ... 219
8.1 ... Grundkomponenten von Brettspielen ... 219
8.2 ... Tic Tac Toe ... 221
8.3 ... Vier gewinnt ... 231
8.4 ... Minimax-Verbesserungen über die Alpha-Beta-Suche hinaus ... 240
8.5 ... Anwendungen im Alltag ... 242
8.6 ... Übungsaufgaben ... 243
9. Sonstige Aufgaben ... 245
9.1 ... Das Rucksackproblem ... 245
9.2 ... Das Problem des Handlungsreisenden ... 251
9.3 ... Merkhilfen für Telefonnummern ... 257
9.4 ... Anwendungen im Alltag ... 260
9.5 ... Übungsaufgaben ... 261
Anhang ... 263
A ... Glossar ... 265
B ... Weitere Ressourcen ... 271
C ... Eine kurze Einführung in Type-Hints ... 277
Index ... 285
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Rheinwerk Computing |
Inhalt: | 292 S. |
ISBN-13: | 9783836277471 |
ISBN-10: | 3836277476 |
Sprache: | Deutsch |
Herstellernummer: | 459/07747 |
Einband: | Klappenbroschur |
Autor: | Kopec, David |
Hersteller: | Rheinwerk Verlag GmbH |
Maße: | 232 x 177 x 19 mm |
Von/Mit: | David Kopec |
Erscheinungsdatum: | 28.06.2020 |
Gewicht: | 0,552 kg |