Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
51,15 €
UVP 58,80 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. Part I introduces some of the basic ideas of the theory: number fields, ideal classes, ideles and adeles, and zeta functions. It also contains a version of a Riemann-Roch theorem in number fields, proved by Lang in the very first version of the book in the sixties. This version can now be seen as a precursor of Arakelov theory. Part II covers class field theory, and Part III is devoted to analytic methods, including an exposition of Tate's thesis, the Brauer-Siegel
This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. Part I introduces some of the basic ideas of the theory: number fields, ideal classes, ideles and adeles, and zeta functions. It also contains a version of a Riemann-Roch theorem in number fields, proved by Lang in the very first version of the book in the sixties. This version can now be seen as a precursor of Arakelov theory. Part II covers class field theory, and Part III is devoted to analytic methods, including an exposition of Tate's thesis, the Brauer-Siegel
Zusammenfassung
This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. Part I introduces some of the basic ideas of the theory: number fields, ideal classes, ideles and adeles, and zeta functions. It also contains a version of a Riemann-Roch theorem in number fields, proved by Lang in the very first version of the book in the sixties. This version can now be seen as a precursor of Arakelov theory. Part II covers class field theory, and Part III is devoted to analytic methods, including an exposition of Tate's thesis, the Brauer-Siegel
Inhaltsverzeichnis
One General Basic Theory.- I Algebraic Integers.- II Completions.- III The Different and Discriminant.- IV Cyclotomic Fields.- V Parallelotopes.- VI The Ideal Function.- VII Ideles and Adeles.- VIII Elementary Properties of the Zeta Function and L-series.- Two Class Field Theory.- IX Norm Index Computations.- X The Artin Symbol, Reciprocity Law, and Class Field Theory.- XI The Existence Theorem and Local Class Field Theory.- XII L-series Again.- Three Analytic Theory.- XIII Functional Equation of the Zeta Function, Hecke's Proof.- XIV Functional Equation, Tate's Thesis.- XV Density of Primes and Tauberian Theorem.- XVI The Brauer-Siegel Theorem.- XVII Explicit Formulas.
Details
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiii
357 S. |
ISBN-13: | 9781461269229 |
ISBN-10: | 1461269229 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Lang, Serge |
Auflage: | Second Edition 1994 |
Hersteller: |
Humana
Springer Springer US, New York, N.Y. |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 21 mm |
Von/Mit: | Serge Lang |
Erscheinungsdatum: | 10.04.2013 |
Gewicht: | 0,569 kg |