Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Adaptive Filters
Theory and Applications
Buch von Behrouz Farhang-Boroujeny
Sprache: Englisch

118,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-3 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
1 Introduction 1

1.1 Linear Filters 1

1.2 Adaptive Filters 2

1.3 Adaptive Filter Structures 3

1.4 Adaptation Approaches 7

1.4.1 Approach Based on Wiener Filter Theory 7

1.4.2 Method of Least-Squares 8

1.5 Real and Complex Forms of Adaptive Filters 9

1.6 Applications 9

1.6.1 Modeling 10

1.6.2 InverseModeling 11

1.6.3 Linear Prediction 15

1.6.4 Interference Cancellation 20

2 Discrete-Time Signals and Systems 29

2.1 Sequences and z-Transform 29

2.2 Parseval's Relation 33

2.3 System Function 34

2.4 Stochastic Processes 36

2.4.1 Stochastic Averages 36

2.4.2 z-Transform Representations 38

2.4.3 The power spectral density 39

2.4.4 Response of Linear Systems to Stochastic Processes 41

2.4.5 Ergodicity and Time Averages 44

3 Wiener Filters 49

3.1 Mean-Squared Error Criterion 49

3.2 Wiener Filter - Transversal, Real-valued Case 51

3.3 Principle of Orthogonality 57

3.4 Normalized Performance Function 59

3.5 Extension to Complex-Valued Case 59

3.6 UnconstrainedWiener Filters 62

3.6.1 Performance Function 62

3.6.2 Optimum Transfer Function 65

3.6.3 Modeling 67

3.6.4 InverseModeling 70

3.6.5 Noise Cancellation 74

3.7 Summary and Discussion 80

4 Eigenanalysis and Performance Surface 91

4.1 Eigenvalues and Eigenvectors 91

4.2 Properties of Eigenvalues and Eigenvectors 92

4.3 Performance Surface 104

5 Search Methods 121

5.1 Method of Steepest-Descent 122

5.2 Learning Curve 128

5.3 Effect of Eigenvalue-Spread 132

5.4 Newton's Method 133

5.5 An Alternative Interpretation of Newton's Algorithm 136

6 LMS Algorithm 141

6.1 Derivation of LMS Algorithm 141

6.2 Average Tap-Weight Behavior of the LMS Algorithm 143

6.3 MSE Behavior of the LMS Algorithm 146

6.3.1 Learning Curve 148

6.3.2 Weight-Error Correlation Matrix 150

6.3.3 Excess MSE and Misadjustment 153

6.3.4 Stability 155

6.3.5 The Effect of Initial Values of TapWeights on the Transient Behavior of the LMS Algorithm 156

6.4 Computer Simulations 157

6.4.1 System Modeling 158

6.4.2 Channel Equalization 160

6.4.3 Adaptive Line Enhancement 164

6.4.4 Beamforming 166

6.5 Simplified LMS Algorithms 168

6.6 Normalized LMS Algorithm 172

6.7 Affine Projection LMS Algorithm 175

6.8 Variable Step-Size LMS Algorithm 178

6.9 LMS Algorithm for Complex-Valued Signals 181

6.10 Beamforming (Revisited) 183

6.11 Linearly Constrained LMS Algorithm 186

6.11.1 Statement of the Problem and Its Optimal Solution 187

6.11.2 Update Equations 188

6.11.3 Extension to the Complex-Valued Case 189

7 Transform Domain Adaptive Filters 209

7.1 Overview of Transform Domain Adaptive Filters 209

7.2 Band-Partitioning Property of Orthogonal Transforms 212

7.3 Orthogonalization Property of Orthogonal Transforms 212

7.4 Transform Domain LMS Algorithm 215

7.5 Ideal LMS-Newton Algorithm and Its Relationship with TDLMS 217

7.6 Selection of the transform T 217

7.6.1 A Geometrical Interpretation 218

7.6.2 A Useful Performance Index 222

7.6.3 Improvement Factor and Comparisons 223

7.6.4 Filtering View 226

7.7 Transforms 230

7.8 Sliding Transforms 232

7.8.1 Frequency Sampling Filters 232

7.8.2 Recursive Realization of Sliding Transforms 233

7.8.3 Non-recursive Realization of Sliding Transforms 237

7.8.4 Comparison of Recursive and Non-recursive Sliding Transforms 240

7.9 Summary and Discussion 245

8 Block Implementation of Adaptive Filters 255

8.1 Block LMS Algorithm 256

8.2 Mathematical Background 259

8.2.1 Linear Convolution Using the Discrete Fourier Transform 259

8.2.2 Circular Matrices 260

8.2.3 WindowMatrices andMatrix Formulation of the Overlap-SaveMethod 263

8.3 The FBLMS Algorithm 264

8.3.1 Constrained and Unconstrained FBLMS Algorithms 265

8.3.2 Convergence Behavior of the FBLMS Algorithm 267

8.3.3 Step-Normalization 268

8.3.4 Summary of the FBLMS Algorithm 269

8.3.5 FBLMS Misadjustment Equations 271

8.3.6 Selection of the Block Length 271

8.4 The Partitioned FBLMS Algorithm 272

8.4.1 Analysis of the PFBLMS Algorithm 273

8.4.2 PFBLMS Algorithm withM > L 276

8.4.3 PFBLMS Misadjustment Equations 279

8.4.4 Computational Complexity and Memory Requirement 279

8.4.5 Modified Constrained PFBLMS Algorithm 280

8.5 Computer Simulations 281

9 Subband Adaptive Filters 299

9.1 DFT Filter Banks 300

9.1.1 Weighted Overlap-Add Method for Realization of DFT Analysis Filter Banks 301

9.1.2 Weighted Overlap-Add Method for Realization of DFT Synthesis Filter Banks 302

9.2 Complementary Filter Banks 304

9.3 Subband Adaptive Filter Structures 308

9.4 Selection of Analysis and Synthesis Filters 311

9.5 Computational Complexity 313

9.6 Decimation Factor and Aliasing 314

9.7 Low-Delay Analysis and Synthesis Filter Banks 316

9.7.1 Design Method 316

9.7.2 Filters Properties 318

9.8 A Design Procedure for Subband Adaptive Filters 319

9.9 An Example 322

9.10 Comparison with FBLMS Algorithm 323

10 IIR Adaptive Filters 329

10.1 Output Error Method 330

10.2 Equation Error Method 336

10.3 Case Study I: IIR Adaptive Line Enhancement 339

10.3.1 IIR ALE Filter,W(z) 340

10.3.2 Performance Functions 340

10.3.3 Simultaneous Adaptation of s and w 344

10.3.4 Robust Adaptation of w 344

10.3.5 Simulation Results 346

10.4 Case Study II: Equalizer Design for Magnetic Recording Channels 349

10.4.1 Channel Discretization 351

10.4.2 Design Steps 352

10.4.3 FIR Equalizer Design 352

10.4.4 Conversion from FIR to IIR Equalizer 355

10.4.5 Conversion from z-Domain to s-Domain 355

10.4.6 Numerical Results 356

10.5 Concluding Remarks 358

11 Lattice Filters 363

11.1 Forward Linear Prediction 363

11.2 Backward Linear Prediction 365

11.3 Relationship Between Forward and Backward Predictors 366

11.4 Prediction-Error Filters 367

11.5 Properties of Prediction Errors 367

11.6 Derivation of Lattice Structure 370

11.7 Lattice as an Orthogonalization Transform 375

11.8 Lattice Joint Process Estimator 377

11.9 System Functions 377

11.10Conversions 378

11.10.1 Conversion Between Lattice and Transversal Predictors 379

11.10.2 Levinson-Durbin Algorithm 380

11.10.3 Extension of Levinson-Durbin Algorithm 382

11.11All-Pole Lattice Structure 383

11.12Pole-Zero Lattice Structure 385

11.13Adaptive Lattice Filter 385

11.13.1Discussion and Simulations 387

11.14AutoregressiveModeling of Random Processes 391

11.15Adaptive Algorithms Based on AutoregressiveModeling 392

11.15.1Algorithms 393

11.15.2 Performance Analysis 398

11.15.3 Simulation Results and Discussion 402

12 Method of Least-Squares 419

12.1 Formulation of Least-Squares Estimation for a Linear Combiner 420

12.2 Principle of Orthogonality 421

12.3 Projection Operator 423

12.4 Standard Recursive Least-Squares Algorithm 424

12.4.1 RLS Recursions 424

12.4.2 Initialization of the RLS Algorithm 427

12.4.3 Summary of the Standard RLS Algorithm 427

12.5 Convergence Behavior of the RLS Algorithm 430

12.5.1 Average Tap-Weight Behavior of the RLS Algorithm 430

12.5.2 Weight-Error Correlation Matrix 431

12.5.3 Learning Curve 432

12.5.4 Excess MSE and Misadjustment 435

12.5.5 Initial Transient Behavior of the RLS Algorithm 435

13 Fast RLS Algorithms 443

13.1 Least-Squares Forward Prediction 443

13.2 Least-Squares Backward Prediction 445

13.3 Least-Squares Lattice 447

13.4 RLSL Algorithm 450

13.4.1 Notations and Preliminaries 450

13.4.2 Update Recursion for the Least-Squares Error Sums 453

13.4.3 Conversion Factor 454

13.4.4 Update Equation for Conversion Factor 455

13.4.5 Update Equation for Crosscorrelations 457

13.4.6 RLSL Algorithm Using A Posteriori Errors 459

13.4.7 RLSL algorithm with Error Feedback 461

13.5 FTRLS Algorithm 463

13.5.1 Derivation of the FTRLS Algorithm 464

13.5.2 Summary of the FTRLS Algorithm 467

13.5.3 Stabilized FTRLS Algorithm 467

14 Tracking 473

14.1 Formulation of the Tracking Problem 473

14.2 Generalized Formulation of LMS Algorithm 474

14.3 MSE Analysis of the Generalized LMS Algorithm 475

14.4 Optimum Step-Size Parameters 479

14.5 Comparisons of Conventional Algorithms 481

14.6 Comparisons Based on Optimum Step-Size Parameters 484

14.7 VSLMS: An algorithm with Optimum Tracking Behavior 486

14.7.1 Derivation of VSLMS Algorithm 487

14.7.2 Variations and Extensions 488

14.7.3 Normalization of the Parameter rho 489

14.7.4 Computer Simulations 490

14.8 RLS Algorithm with Variable Forgetting Factor 494

14.9 Summary 497

15 Echo Cancellation 501

15.1 The Problem Statement 501

15.2 Structures and Adaptive Algorithms 504

15.2.1 Normalized LMS (NLMS) Algorithm 505

15.2.2 Affine Projection LMS (APLMS) Algorithm 508

15.2.3 Frequency Domain Block LMS Algorithm 509

15.2.4 Subband LMS Algorithm 511

15.2.5 LMS-Newton Algorithm 513

15.2.6 Numerical...
1 Introduction 1

1.1 Linear Filters 1

1.2 Adaptive Filters 2

1.3 Adaptive Filter Structures 3

1.4 Adaptation Approaches 7

1.4.1 Approach Based on Wiener Filter Theory 7

1.4.2 Method of Least-Squares 8

1.5 Real and Complex Forms of Adaptive Filters 9

1.6 Applications 9

1.6.1 Modeling 10

1.6.2 InverseModeling 11

1.6.3 Linear Prediction 15

1.6.4 Interference Cancellation 20

2 Discrete-Time Signals and Systems 29

2.1 Sequences and z-Transform 29

2.2 Parseval's Relation 33

2.3 System Function 34

2.4 Stochastic Processes 36

2.4.1 Stochastic Averages 36

2.4.2 z-Transform Representations 38

2.4.3 The power spectral density 39

2.4.4 Response of Linear Systems to Stochastic Processes 41

2.4.5 Ergodicity and Time Averages 44

3 Wiener Filters 49

3.1 Mean-Squared Error Criterion 49

3.2 Wiener Filter - Transversal, Real-valued Case 51

3.3 Principle of Orthogonality 57

3.4 Normalized Performance Function 59

3.5 Extension to Complex-Valued Case 59

3.6 UnconstrainedWiener Filters 62

3.6.1 Performance Function 62

3.6.2 Optimum Transfer Function 65

3.6.3 Modeling 67

3.6.4 InverseModeling 70

3.6.5 Noise Cancellation 74

3.7 Summary and Discussion 80

4 Eigenanalysis and Performance Surface 91

4.1 Eigenvalues and Eigenvectors 91

4.2 Properties of Eigenvalues and Eigenvectors 92

4.3 Performance Surface 104

5 Search Methods 121

5.1 Method of Steepest-Descent 122

5.2 Learning Curve 128

5.3 Effect of Eigenvalue-Spread 132

5.4 Newton's Method 133

5.5 An Alternative Interpretation of Newton's Algorithm 136

6 LMS Algorithm 141

6.1 Derivation of LMS Algorithm 141

6.2 Average Tap-Weight Behavior of the LMS Algorithm 143

6.3 MSE Behavior of the LMS Algorithm 146

6.3.1 Learning Curve 148

6.3.2 Weight-Error Correlation Matrix 150

6.3.3 Excess MSE and Misadjustment 153

6.3.4 Stability 155

6.3.5 The Effect of Initial Values of TapWeights on the Transient Behavior of the LMS Algorithm 156

6.4 Computer Simulations 157

6.4.1 System Modeling 158

6.4.2 Channel Equalization 160

6.4.3 Adaptive Line Enhancement 164

6.4.4 Beamforming 166

6.5 Simplified LMS Algorithms 168

6.6 Normalized LMS Algorithm 172

6.7 Affine Projection LMS Algorithm 175

6.8 Variable Step-Size LMS Algorithm 178

6.9 LMS Algorithm for Complex-Valued Signals 181

6.10 Beamforming (Revisited) 183

6.11 Linearly Constrained LMS Algorithm 186

6.11.1 Statement of the Problem and Its Optimal Solution 187

6.11.2 Update Equations 188

6.11.3 Extension to the Complex-Valued Case 189

7 Transform Domain Adaptive Filters 209

7.1 Overview of Transform Domain Adaptive Filters 209

7.2 Band-Partitioning Property of Orthogonal Transforms 212

7.3 Orthogonalization Property of Orthogonal Transforms 212

7.4 Transform Domain LMS Algorithm 215

7.5 Ideal LMS-Newton Algorithm and Its Relationship with TDLMS 217

7.6 Selection of the transform T 217

7.6.1 A Geometrical Interpretation 218

7.6.2 A Useful Performance Index 222

7.6.3 Improvement Factor and Comparisons 223

7.6.4 Filtering View 226

7.7 Transforms 230

7.8 Sliding Transforms 232

7.8.1 Frequency Sampling Filters 232

7.8.2 Recursive Realization of Sliding Transforms 233

7.8.3 Non-recursive Realization of Sliding Transforms 237

7.8.4 Comparison of Recursive and Non-recursive Sliding Transforms 240

7.9 Summary and Discussion 245

8 Block Implementation of Adaptive Filters 255

8.1 Block LMS Algorithm 256

8.2 Mathematical Background 259

8.2.1 Linear Convolution Using the Discrete Fourier Transform 259

8.2.2 Circular Matrices 260

8.2.3 WindowMatrices andMatrix Formulation of the Overlap-SaveMethod 263

8.3 The FBLMS Algorithm 264

8.3.1 Constrained and Unconstrained FBLMS Algorithms 265

8.3.2 Convergence Behavior of the FBLMS Algorithm 267

8.3.3 Step-Normalization 268

8.3.4 Summary of the FBLMS Algorithm 269

8.3.5 FBLMS Misadjustment Equations 271

8.3.6 Selection of the Block Length 271

8.4 The Partitioned FBLMS Algorithm 272

8.4.1 Analysis of the PFBLMS Algorithm 273

8.4.2 PFBLMS Algorithm withM > L 276

8.4.3 PFBLMS Misadjustment Equations 279

8.4.4 Computational Complexity and Memory Requirement 279

8.4.5 Modified Constrained PFBLMS Algorithm 280

8.5 Computer Simulations 281

9 Subband Adaptive Filters 299

9.1 DFT Filter Banks 300

9.1.1 Weighted Overlap-Add Method for Realization of DFT Analysis Filter Banks 301

9.1.2 Weighted Overlap-Add Method for Realization of DFT Synthesis Filter Banks 302

9.2 Complementary Filter Banks 304

9.3 Subband Adaptive Filter Structures 308

9.4 Selection of Analysis and Synthesis Filters 311

9.5 Computational Complexity 313

9.6 Decimation Factor and Aliasing 314

9.7 Low-Delay Analysis and Synthesis Filter Banks 316

9.7.1 Design Method 316

9.7.2 Filters Properties 318

9.8 A Design Procedure for Subband Adaptive Filters 319

9.9 An Example 322

9.10 Comparison with FBLMS Algorithm 323

10 IIR Adaptive Filters 329

10.1 Output Error Method 330

10.2 Equation Error Method 336

10.3 Case Study I: IIR Adaptive Line Enhancement 339

10.3.1 IIR ALE Filter,W(z) 340

10.3.2 Performance Functions 340

10.3.3 Simultaneous Adaptation of s and w 344

10.3.4 Robust Adaptation of w 344

10.3.5 Simulation Results 346

10.4 Case Study II: Equalizer Design for Magnetic Recording Channels 349

10.4.1 Channel Discretization 351

10.4.2 Design Steps 352

10.4.3 FIR Equalizer Design 352

10.4.4 Conversion from FIR to IIR Equalizer 355

10.4.5 Conversion from z-Domain to s-Domain 355

10.4.6 Numerical Results 356

10.5 Concluding Remarks 358

11 Lattice Filters 363

11.1 Forward Linear Prediction 363

11.2 Backward Linear Prediction 365

11.3 Relationship Between Forward and Backward Predictors 366

11.4 Prediction-Error Filters 367

11.5 Properties of Prediction Errors 367

11.6 Derivation of Lattice Structure 370

11.7 Lattice as an Orthogonalization Transform 375

11.8 Lattice Joint Process Estimator 377

11.9 System Functions 377

11.10Conversions 378

11.10.1 Conversion Between Lattice and Transversal Predictors 379

11.10.2 Levinson-Durbin Algorithm 380

11.10.3 Extension of Levinson-Durbin Algorithm 382

11.11All-Pole Lattice Structure 383

11.12Pole-Zero Lattice Structure 385

11.13Adaptive Lattice Filter 385

11.13.1Discussion and Simulations 387

11.14AutoregressiveModeling of Random Processes 391

11.15Adaptive Algorithms Based on AutoregressiveModeling 392

11.15.1Algorithms 393

11.15.2 Performance Analysis 398

11.15.3 Simulation Results and Discussion 402

12 Method of Least-Squares 419

12.1 Formulation of Least-Squares Estimation for a Linear Combiner 420

12.2 Principle of Orthogonality 421

12.3 Projection Operator 423

12.4 Standard Recursive Least-Squares Algorithm 424

12.4.1 RLS Recursions 424

12.4.2 Initialization of the RLS Algorithm 427

12.4.3 Summary of the Standard RLS Algorithm 427

12.5 Convergence Behavior of the RLS Algorithm 430

12.5.1 Average Tap-Weight Behavior of the RLS Algorithm 430

12.5.2 Weight-Error Correlation Matrix 431

12.5.3 Learning Curve 432

12.5.4 Excess MSE and Misadjustment 435

12.5.5 Initial Transient Behavior of the RLS Algorithm 435

13 Fast RLS Algorithms 443

13.1 Least-Squares Forward Prediction 443

13.2 Least-Squares Backward Prediction 445

13.3 Least-Squares Lattice 447

13.4 RLSL Algorithm 450

13.4.1 Notations and Preliminaries 450

13.4.2 Update Recursion for the Least-Squares Error Sums 453

13.4.3 Conversion Factor 454

13.4.4 Update Equation for Conversion Factor 455

13.4.5 Update Equation for Crosscorrelations 457

13.4.6 RLSL Algorithm Using A Posteriori Errors 459

13.4.7 RLSL algorithm with Error Feedback 461

13.5 FTRLS Algorithm 463

13.5.1 Derivation of the FTRLS Algorithm 464

13.5.2 Summary of the FTRLS Algorithm 467

13.5.3 Stabilized FTRLS Algorithm 467

14 Tracking 473

14.1 Formulation of the Tracking Problem 473

14.2 Generalized Formulation of LMS Algorithm 474

14.3 MSE Analysis of the Generalized LMS Algorithm 475

14.4 Optimum Step-Size Parameters 479

14.5 Comparisons of Conventional Algorithms 481

14.6 Comparisons Based on Optimum Step-Size Parameters 484

14.7 VSLMS: An algorithm with Optimum Tracking Behavior 486

14.7.1 Derivation of VSLMS Algorithm 487

14.7.2 Variations and Extensions 488

14.7.3 Normalization of the Parameter rho 489

14.7.4 Computer Simulations 490

14.8 RLS Algorithm with Variable Forgetting Factor 494

14.9 Summary 497

15 Echo Cancellation 501

15.1 The Problem Statement 501

15.2 Structures and Adaptive Algorithms 504

15.2.1 Normalized LMS (NLMS) Algorithm 505

15.2.2 Affine Projection LMS (APLMS) Algorithm 508

15.2.3 Frequency Domain Block LMS Algorithm 509

15.2.4 Subband LMS Algorithm 511

15.2.5 LMS-Newton Algorithm 513

15.2.6 Numerical...
Details
Erscheinungsjahr: 2013
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 800 S.
ISBN-13: 9781119979548
ISBN-10: 1119979544
Sprache: Englisch
Einband: Gebunden
Autor: Farhang-Boroujeny, Behrouz
Auflage: 2/2013
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 243 x 180 x 43 mm
Von/Mit: Behrouz Farhang-Boroujeny
Erscheinungsdatum: 17.05.2013
Gewicht: 1,308 kg
Artikel-ID: 129326356
Details
Erscheinungsjahr: 2013
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 800 S.
ISBN-13: 9781119979548
ISBN-10: 1119979544
Sprache: Englisch
Einband: Gebunden
Autor: Farhang-Boroujeny, Behrouz
Auflage: 2/2013
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 243 x 180 x 43 mm
Von/Mit: Behrouz Farhang-Boroujeny
Erscheinungsdatum: 17.05.2013
Gewicht: 1,308 kg
Artikel-ID: 129326356
Sicherheitshinweis