60,98 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
The first textbook completely devoted to the topic of compressive sensing
Comprehensive treatment of the subject, including background material from probability theory, detailed proofs of the main theorems, and an outline of possible applications
Numerous exercises designed to help students understand the material
An extensive bibliography with over 500 references that guide researchers through the literature
Includes supplementary material: [...]
1 An Invitation to Compressive Sensing.- 2 Sparse Solutions of Underdetermined Systems.- 3 Basic Algorithms.- 4 Basis Pursuit.- 5 Coherence.- 6 Restricted Isometry Property.- 7 Basic Tools from Probability Theory.- 8 Advanced Tools from Probability Theory.- 9 Sparse Recovery with Random Matrices.- 10 Gelfand Widths of
l
1-Balls.- 11 Instance Optimality and Quotient Property.- 12 Random Sampling in Bounded Orthonormal Systems.- 13 Lossless Expanders in Compressive Sensing.- 14 Recovery of Random Signals using Deterministic Matrices.- 15 Algorithms for
l
1-Minimization.- Appendix A Matrix Analysis.- Appendix B Convex Analysis.- Appendix C Miscellanea.- List of Symbols.- References.
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | EDV |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Reihe: | Applied and Numerical Harmonic Analysis |
Inhalt: |
xviii
625 S. |
ISBN-13: | 9781493900633 |
ISBN-10: | 1493900633 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Rauhut, Holger
Foucart, Simon |
Auflage: | Softcover reprint of the original 1st ed. 2013 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Applied and Numerical Harmonic Analysis |
Maße: | 235 x 155 x 35 mm |
Von/Mit: | Holger Rauhut (u. a.) |
Erscheinungsdatum: | 18.08.2015 |
Gewicht: | 0,961 kg |
The first textbook completely devoted to the topic of compressive sensing
Comprehensive treatment of the subject, including background material from probability theory, detailed proofs of the main theorems, and an outline of possible applications
Numerous exercises designed to help students understand the material
An extensive bibliography with over 500 references that guide researchers through the literature
Includes supplementary material: [...]
1 An Invitation to Compressive Sensing.- 2 Sparse Solutions of Underdetermined Systems.- 3 Basic Algorithms.- 4 Basis Pursuit.- 5 Coherence.- 6 Restricted Isometry Property.- 7 Basic Tools from Probability Theory.- 8 Advanced Tools from Probability Theory.- 9 Sparse Recovery with Random Matrices.- 10 Gelfand Widths of
l
1-Balls.- 11 Instance Optimality and Quotient Property.- 12 Random Sampling in Bounded Orthonormal Systems.- 13 Lossless Expanders in Compressive Sensing.- 14 Recovery of Random Signals using Deterministic Matrices.- 15 Algorithms for
l
1-Minimization.- Appendix A Matrix Analysis.- Appendix B Convex Analysis.- Appendix C Miscellanea.- List of Symbols.- References.
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | EDV |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Reihe: | Applied and Numerical Harmonic Analysis |
Inhalt: |
xviii
625 S. |
ISBN-13: | 9781493900633 |
ISBN-10: | 1493900633 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Rauhut, Holger
Foucart, Simon |
Auflage: | Softcover reprint of the original 1st ed. 2013 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Applied and Numerical Harmonic Analysis |
Maße: | 235 x 155 x 35 mm |
Von/Mit: | Holger Rauhut (u. a.) |
Erscheinungsdatum: | 18.08.2015 |
Gewicht: | 0,961 kg |