Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Einführung.- 1 Die kontinuierliche Wavelet-Transformation.- 1.1 Definition und elementare Eigenschaften.- 1.2 Affine Operatoren.- 1.3 Filtereigenschaften.- 1.4 Approximationseigenschaften.- 1.5 Abklingverhalten.- 1.6 Gruppentheoretische Grundlagen.- 1.7 Die Wavelet-Transformation auf Sobolev-Räumen.- Aufgaben.- 2 Die diskrete Wavelet-Transformation.- 2.1 Wavelet-Frames.- 2.2 Multi-Skalen-Analyse HO.- 2.3 Schnelle Wavelet-Transformation.- 2.4 Orthogonale eindimensionale Wavelets.- 2.5 Orthogonale zweidimensionale Wavelets.- Aufgaben.- 3 Anwendungen der Wavelet-Transformation.- 3.1 Wavelet-Analyse eindimensionaler Signale.- 3.2 Qualitätsbeurteilung von Gewebe.- 3.3 Datenkompression in der digitalen Bildverarbeitung.- 3.4 Regularisierung Inverser Probleme.- 3.5 Wavelet-Galerkin-Methoden für Randwertprobleme.- 3.6 Schwarz-Iterationen.- 3.7 Ausblick auf zweidimensionale Randwertprobleme.- Aufgaben.- Anhang: Fourier-Transformat ion.
Einführung.- 1 Die kontinuierliche Wavelet-Transformation.- 1.1 Definition und elementare Eigenschaften.- 1.2 Affine Operatoren.- 1.3 Filtereigenschaften.- 1.4 Approximationseigenschaften.- 1.5 Abklingverhalten.- 1.6 Gruppentheoretische Grundlagen.- 1.7 Die Wavelet-Transformation auf Sobolev-Räumen.- Aufgaben.- 2 Die diskrete Wavelet-Transformation.- 2.1 Wavelet-Frames.- 2.2 Multi-Skalen-Analyse HO.- 2.3 Schnelle Wavelet-Transformation.- 2.4 Orthogonale eindimensionale Wavelets.- 2.5 Orthogonale zweidimensionale Wavelets.- Aufgaben.- 3 Anwendungen der Wavelet-Transformation.- 3.1 Wavelet-Analyse eindimensionaler Signale.- 3.2 Qualitätsbeurteilung von Gewebe.- 3.3 Datenkompression in der digitalen Bildverarbeitung.- 3.4 Regularisierung Inverser Probleme.- 3.5 Wavelet-Galerkin-Methoden für Randwertprobleme.- 3.6 Schwarz-Iterationen.- 3.7 Ausblick auf zweidimensionale Randwertprobleme.- Aufgaben.- Anhang: Fourier-Transformat ion.
Inhaltsverzeichnis
Einführung.- 1 Die kontinuierliche Wavelet-Transformation.- 1.1 Definition und elementare Eigenschaften.- 1.2 Affine Operatoren.- 1.3 Filtereigenschaften.- 1.4 Approximationseigenschaften.- 1.5 Abklingverhalten.- 1.6 Gruppentheoretische Grundlagen.- 1.7 Die Wavelet-Transformation auf Sobolev-Räumen.- Aufgaben.- 2 Die diskrete Wavelet-Transformation.- 2.1 Wavelet-Frames.- 2.2 Multi-Skalen-Analyse HO.- 2.3 Schnelle Wavelet-Transformation.- 2.4 Orthogonale eindimensionale Wavelets.- 2.5 Orthogonale zweidimensionale Wavelets.- Aufgaben.- 3 Anwendungen der Wavelet-Transformation.- 3.1 Wavelet-Analyse eindimensionaler Signale.- 3.2 Qualitätsbeurteilung von Gewebe.- 3.3 Datenkompression in der digitalen Bildverarbeitung.- 3.4 Regularisierung Inverser Probleme.- 3.5 Wavelet-Galerkin-Methoden für Randwertprobleme.- 3.6 Schwarz-Iterationen.- 3.7 Ausblick auf zweidimensionale Randwertprobleme.- Aufgaben.- Anhang: Fourier-Transformat ion.
Details
Erscheinungsjahr: 1998
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 330 S.
14 s/w Illustr.
330 S. 14 Abb. Mit zahlr. Abb.
ISBN-13: 9783519120940
ISBN-10: 3519120941
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Louis, Alfred K.
Maaß, Peter
Rieder, Andreas
Auflage: 2. überarbeitete und erweiterte Auflage 1998
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 205 x 137 x 19 mm
Von/Mit: Alfred K. Louis (u. a.)
Erscheinungsdatum: 01.01.1998
Gewicht: 0,394 kg
Artikel-ID: 106845956