Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
94,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.
Inhaltsverzeichnis
Preface; 1. Introduction; 2. Symmetries and conservation laws; 3. Why a probabilistic description of turbulence?; 4. Probabilistic tools: a survey; 5. Two experimental laws of fully developed turbulence; 6. The Kolmogorov 1941 theory; 7. Kolmogorov and Landau: the lack of universality; 8. Phenomenology of turbulence in the sense of Kolmogorov 1941; 9. Intermittency; 10. Further reading: a guided tour; References; Author index; Subject index.
Details
Erscheinungsjahr: | 2006 |
---|---|
Fachbereich: | Astronomie |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780521457132 |
ISBN-10: | 0521457130 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Frisch, Uriel
Frisch, U. Frisch |
Hersteller: | Cambridge University Press |
Maße: | 234 x 156 x 17 mm |
Von/Mit: | Uriel Frisch (u. a.) |
Erscheinungsdatum: | 26.12.2006 |
Gewicht: | 0,477 kg |
Inhaltsverzeichnis
Preface; 1. Introduction; 2. Symmetries and conservation laws; 3. Why a probabilistic description of turbulence?; 4. Probabilistic tools: a survey; 5. Two experimental laws of fully developed turbulence; 6. The Kolmogorov 1941 theory; 7. Kolmogorov and Landau: the lack of universality; 8. Phenomenology of turbulence in the sense of Kolmogorov 1941; 9. Intermittency; 10. Further reading: a guided tour; References; Author index; Subject index.
Details
Erscheinungsjahr: | 2006 |
---|---|
Fachbereich: | Astronomie |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780521457132 |
ISBN-10: | 0521457130 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Frisch, Uriel
Frisch, U. Frisch |
Hersteller: | Cambridge University Press |
Maße: | 234 x 156 x 17 mm |
Von/Mit: | Uriel Frisch (u. a.) |
Erscheinungsdatum: | 26.12.2006 |
Gewicht: | 0,477 kg |
Warnhinweis