Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Thomas' Calculus, SI Units
Taschenbuch von Joel Hass (u. a.)
Sprache: Englisch

127,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
1. Functions
  • 1.1 Functions and Their Graphs
  • 1.2 Combining Functions; Shifting and Scaling Graphs
  • 1.3 Trigonometric Functions
  • 1.4 Graphing with Software
2. Limits and Continuity
  • 2.1 Rates of Change and Tangent Lines to Curves
  • 2.2 Limit of a Function and Limit Laws
  • 2.3 The Precise Definition of a Limit
  • 2.4 One-Sided Limits
  • 2.5 Continuity
  • 2.6 Limits Involving Infinity; Asymptotes of Graphs
3. Derivatives
  • 3.1 Tangent Lines and the Derivative at a Point
  • 3.2 The Derivative as a Function
  • 3.3 Differentiation Rules
  • 3.4 The Derivative as a Rate of Change
  • 3.5 Derivatives of Trigonometric Functions
  • 3.6 The Chain Rule
  • 3.7 Implicit Differentiation
  • 3.8 Derivatives of Inverse Functions and Logarithms
  • 3.9 Related Rates
  • 3.10 Linearization and Differentials
4. Applications of Derivatives
  • 4.1 Extreme Values of Functions on Closed Intervals
  • 4.2 The Mean Value Theorem
  • 4.3 Monotonic Functions and the First Derivative Test
  • 4.4 Concavity and Curve Sketching
  • 4.5 Applied Optimization
  • 4.6 Newton's Method
  • 4.7 Antiderivatives
5. Integrals
  • 5.1 Area and Estimating with Finite Sums
  • 5.2 Sigma Notation and Limits of Finite Sums
  • 5.3 The Definite Integral
  • 5.4 The Fundamental Theorem of Calculus
  • 5.5 Indefinite Integrals and the Substitution Method
  • 5.6 Definite Integral Substitutions and the Area Between Curves
6. Applications of Definite Integrals
  • 6.1 Volumes Using Cross-Sections
  • 6.2 Volumes Using Cylindrical Shells
  • 6.3 Arc Length
  • 6.4 Areas of Surfaces of Revolution
  • 6.5 Work and Fluid Forces
  • 6.6 Moments and Centers of Mass
7. Transcendental Functions
  • 7.1 Inverse Functions and Their Derivatives
  • 7.2 Natural Logarithms
  • 7.3 Exponential Functions
  • 7.4 Exponential Change and Separable Differential Equations
  • 7.5 Indeterminate Forms and L'Hpital's Rule
  • 7.6 Inverse Trigonometric Functions
  • 7.7 Hyperbolic Functions
  • 7.8 Relative Rates of Growth
8. Techniques of Integration
  • 8.1 Using Basic Integration Formulas
  • 8.2 Integration by Parts
  • 8.3 Trigonometric Integrals
  • 8.4 Trigonometric Substitutions
  • 8.5 Integration of Rational Functions by Partial Fractions
  • 8.6 Integral Tables and Computer Algebra Systems
  • 8.7 Numerical Integration
  • 8.8 Improper Integrals
  • 8.9 Probability
9. First-Order Differential Equations
  • 9.1 Solutions, Slope Fields, and Euler's Method
  • 9.2 First-Order Linear Equations
  • 9.3 Applications
  • 9.4 Graphical Solutions of Autonomous Equations
  • 9.5 Systems of Equations and Phase Planes
10. Infinite Sequences and Series
  • 10.1 Sequences
  • 10.2 Infinite Series
  • 10.3 The Integral Test
  • 10.4 Comparison Tests
  • 10.5 Absolute Convergence; The Ratio and Root Tests
  • 10.6 Alternating Series and Conditional Convergence
  • 10.7 Power Series
  • 10.8 Taylor and Maclaurin Series
  • 10.9 Convergence of Taylor Series
  • 10.10 Applications of Taylor Series
11. Parametric Equations and Polar Coordinates
  • 11.1 Parametrizations of Plane Curves
  • 11.2 Calculus with Parametric Curves
  • 11.3 Polar Coordinates
  • 11.4 Graphing Polar Coordinate Equations
  • 11.5 Areas and Lengths in Polar Coordinates
  • 11.6 Conic Sections
  • 11.7 Conics in Polar Coordinates
Appendix A
  • A.1 Real Numbers and the Real Line
  • A.2 Mathematical Induction
  • A.3 Lines, Circles, and Parabolas
  • A.4 Proofs of Limit Theorems
  • A.5 Commonly Occurring Limits
  • A.6 Theory of the Real Numbers
  • A.7 The Distributive Law for Vector Cross Products
  • A.8 The Mixed Derivative Theorem and the Increment Theorem
Appendix B (online)
  • B.1 Determinants
  • B.2 Extreme Values and Saddle Points for Functions of More than Two Variables
  • B.3 The Method of Gradient Descent


Answers to Odd-Numbered Exercises



Applications Index



Subject Index



A Brief Table of Integrals



Credits

1. Functions
  • 1.1 Functions and Their Graphs
  • 1.2 Combining Functions; Shifting and Scaling Graphs
  • 1.3 Trigonometric Functions
  • 1.4 Graphing with Software
2. Limits and Continuity
  • 2.1 Rates of Change and Tangent Lines to Curves
  • 2.2 Limit of a Function and Limit Laws
  • 2.3 The Precise Definition of a Limit
  • 2.4 One-Sided Limits
  • 2.5 Continuity
  • 2.6 Limits Involving Infinity; Asymptotes of Graphs
3. Derivatives
  • 3.1 Tangent Lines and the Derivative at a Point
  • 3.2 The Derivative as a Function
  • 3.3 Differentiation Rules
  • 3.4 The Derivative as a Rate of Change
  • 3.5 Derivatives of Trigonometric Functions
  • 3.6 The Chain Rule
  • 3.7 Implicit Differentiation
  • 3.8 Derivatives of Inverse Functions and Logarithms
  • 3.9 Related Rates
  • 3.10 Linearization and Differentials
4. Applications of Derivatives
  • 4.1 Extreme Values of Functions on Closed Intervals
  • 4.2 The Mean Value Theorem
  • 4.3 Monotonic Functions and the First Derivative Test
  • 4.4 Concavity and Curve Sketching
  • 4.5 Applied Optimization
  • 4.6 Newton's Method
  • 4.7 Antiderivatives
5. Integrals
  • 5.1 Area and Estimating with Finite Sums
  • 5.2 Sigma Notation and Limits of Finite Sums
  • 5.3 The Definite Integral
  • 5.4 The Fundamental Theorem of Calculus
  • 5.5 Indefinite Integrals and the Substitution Method
  • 5.6 Definite Integral Substitutions and the Area Between Curves
6. Applications of Definite Integrals
  • 6.1 Volumes Using Cross-Sections
  • 6.2 Volumes Using Cylindrical Shells
  • 6.3 Arc Length
  • 6.4 Areas of Surfaces of Revolution
  • 6.5 Work and Fluid Forces
  • 6.6 Moments and Centers of Mass
7. Transcendental Functions
  • 7.1 Inverse Functions and Their Derivatives
  • 7.2 Natural Logarithms
  • 7.3 Exponential Functions
  • 7.4 Exponential Change and Separable Differential Equations
  • 7.5 Indeterminate Forms and L'Hpital's Rule
  • 7.6 Inverse Trigonometric Functions
  • 7.7 Hyperbolic Functions
  • 7.8 Relative Rates of Growth
8. Techniques of Integration
  • 8.1 Using Basic Integration Formulas
  • 8.2 Integration by Parts
  • 8.3 Trigonometric Integrals
  • 8.4 Trigonometric Substitutions
  • 8.5 Integration of Rational Functions by Partial Fractions
  • 8.6 Integral Tables and Computer Algebra Systems
  • 8.7 Numerical Integration
  • 8.8 Improper Integrals
  • 8.9 Probability
9. First-Order Differential Equations
  • 9.1 Solutions, Slope Fields, and Euler's Method
  • 9.2 First-Order Linear Equations
  • 9.3 Applications
  • 9.4 Graphical Solutions of Autonomous Equations
  • 9.5 Systems of Equations and Phase Planes
10. Infinite Sequences and Series
  • 10.1 Sequences
  • 10.2 Infinite Series
  • 10.3 The Integral Test
  • 10.4 Comparison Tests
  • 10.5 Absolute Convergence; The Ratio and Root Tests
  • 10.6 Alternating Series and Conditional Convergence
  • 10.7 Power Series
  • 10.8 Taylor and Maclaurin Series
  • 10.9 Convergence of Taylor Series
  • 10.10 Applications of Taylor Series
11. Parametric Equations and Polar Coordinates
  • 11.1 Parametrizations of Plane Curves
  • 11.2 Calculus with Parametric Curves
  • 11.3 Polar Coordinates
  • 11.4 Graphing Polar Coordinate Equations
  • 11.5 Areas and Lengths in Polar Coordinates
  • 11.6 Conic Sections
  • 11.7 Conics in Polar Coordinates
Appendix A
  • A.1 Real Numbers and the Real Line
  • A.2 Mathematical Induction
  • A.3 Lines, Circles, and Parabolas
  • A.4 Proofs of Limit Theorems
  • A.5 Commonly Occurring Limits
  • A.6 Theory of the Real Numbers
  • A.7 The Distributive Law for Vector Cross Products
  • A.8 The Mixed Derivative Theorem and the Increment Theorem
Appendix B (online)
  • B.1 Determinants
  • B.2 Extreme Values and Saddle Points for Functions of More than Two Variables
  • B.3 The Method of Gradient Descent


Answers to Odd-Numbered Exercises



Applications Index



Subject Index



A Brief Table of Integrals



Credits

Details
Erscheinungsjahr: 2023
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292459677
ISBN-10: 1292459670
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Hass, Joel
Heil, Christopher
Weir, Maurice
Auflage: 15 ed
Hersteller: Pearson Education Limited
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 52 x 219 x 275 mm
Von/Mit: Joel Hass (u. a.)
Erscheinungsdatum: 29.06.2023
Gewicht: 2,577 kg
Artikel-ID: 126428686
Details
Erscheinungsjahr: 2023
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292459677
ISBN-10: 1292459670
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Hass, Joel
Heil, Christopher
Weir, Maurice
Auflage: 15 ed
Hersteller: Pearson Education Limited
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 52 x 219 x 275 mm
Von/Mit: Joel Hass (u. a.)
Erscheinungsdatum: 29.06.2023
Gewicht: 2,577 kg
Artikel-ID: 126428686
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte