Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
The N-Vortex Problem
Analytical Techniques
Buch von Paul K. Newton
Sprache: Englisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
Zusammenfassung
For applied mathematicians, physicists, and engineers interested in either nonlinear dynamics or classical mechanics and fluid dynamics. Describes the Hamiltonian aspects of vortex dynamics so that it may serve as an entry into the large literature on integrable and non-integrable vortex problems.
Inhaltsverzeichnis
Preface.- 1 Introduction.- 1.1 Vorticity Dynamics.- 1.2 Hamiltonian Dynamics.- 1.3 Summary of Basic Questions.- 1.4 Exercises.- 2 N Vortices in the Plane.- 2.1 General Formulation.- 2.2 N = 3.- 2.3 N = 4.- 2.4 Bibliographic Notes.- 2.5 Exercises.- 3 Domains with Boundaries.- 3.1 Green's Function of the First Kind.- 3.2 Method of Images.- 3.3 Conformai Mapping Techniques.- 3.4 Breaking Integrability.- 3.5 Bibliographic Notes.- 3.6 Exercises.- 4 Vortex Motion on a Sphere.- 4.1 General Formulation.- 4.2 Dynamics of Three Vortices.- 4.3 Phase Plane Dynamics.- 4.4 3-Vortex Collapse.- 4.5 Stereographic Projection.- 4.6 Integrable Streamline Topologies.- 4.7 Boundaries.- 4.8 Bibliographic Notes.- 4.9 Exercises.- 5 Geometric Phases.- 5.1 Geometric Phases in Various Contexts.- 5.2 Phase Calculations For Slowly Varying Systems.- 5.3 Definition of the Adiabatic Hannay Angle.- 5.4 3-Vortex Problem.- 5.5 Applications.- 5.6 Exercises.- 6 Statistical Point Vortex Theories.- 6.1 Basics of Statistical Physics.- 6.2 Statistical Equilibrium Theories.- 6.3 Maximum Entropy Theories.- 6.4 Nonequilibrium Theories.- 6.5 Exercises.- 7 Vortex Patch Models.- 7.1 Introduction to Vortex Patches.- 7.2 The Kida-Neu Vortex.- 7.3 Time-Dependent Strain.- 7.4 Melander-Zabusky-Styczek Model.- 7.5 Geometric Phase for Corotating Patches.- 7.6 Viscous Shear Layer Model.- 7.7 Bibliographic Notes.- 7.8 Exercises.- 8 Vortex Filament Models.- 8.1 Introduction to Vortex Filaments and the LIE.- 8.2 DaRios-Betchov Intrinsic Equations.- 8.3 Hasimoto's Transformation.- 8.4 LIA Invariants.- 8.5 Vortex-Stretching Models.- 8.6 Nearly Parallel Filaments.- 8.7 The Vorton Model.- 8.8 Exercises.- References.
Details
Erscheinungsjahr: 2001
Fachbereich: Mechanik & Akustik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Applied Mathematical Sciences
Inhalt: xviii
420 S.
82 s/w Illustr.
ISBN-13: 9780387952260
ISBN-10: 0387952268
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Newton, Paul K.
Hersteller: Springer New York
Springer US, New York, N.Y.
Applied Mathematical Sciences
Maße: 241 x 160 x 29 mm
Von/Mit: Paul K. Newton
Erscheinungsdatum: 25.05.2001
Gewicht: 0,828 kg
Artikel-ID: 105090494
Zusammenfassung
For applied mathematicians, physicists, and engineers interested in either nonlinear dynamics or classical mechanics and fluid dynamics. Describes the Hamiltonian aspects of vortex dynamics so that it may serve as an entry into the large literature on integrable and non-integrable vortex problems.
Inhaltsverzeichnis
Preface.- 1 Introduction.- 1.1 Vorticity Dynamics.- 1.2 Hamiltonian Dynamics.- 1.3 Summary of Basic Questions.- 1.4 Exercises.- 2 N Vortices in the Plane.- 2.1 General Formulation.- 2.2 N = 3.- 2.3 N = 4.- 2.4 Bibliographic Notes.- 2.5 Exercises.- 3 Domains with Boundaries.- 3.1 Green's Function of the First Kind.- 3.2 Method of Images.- 3.3 Conformai Mapping Techniques.- 3.4 Breaking Integrability.- 3.5 Bibliographic Notes.- 3.6 Exercises.- 4 Vortex Motion on a Sphere.- 4.1 General Formulation.- 4.2 Dynamics of Three Vortices.- 4.3 Phase Plane Dynamics.- 4.4 3-Vortex Collapse.- 4.5 Stereographic Projection.- 4.6 Integrable Streamline Topologies.- 4.7 Boundaries.- 4.8 Bibliographic Notes.- 4.9 Exercises.- 5 Geometric Phases.- 5.1 Geometric Phases in Various Contexts.- 5.2 Phase Calculations For Slowly Varying Systems.- 5.3 Definition of the Adiabatic Hannay Angle.- 5.4 3-Vortex Problem.- 5.5 Applications.- 5.6 Exercises.- 6 Statistical Point Vortex Theories.- 6.1 Basics of Statistical Physics.- 6.2 Statistical Equilibrium Theories.- 6.3 Maximum Entropy Theories.- 6.4 Nonequilibrium Theories.- 6.5 Exercises.- 7 Vortex Patch Models.- 7.1 Introduction to Vortex Patches.- 7.2 The Kida-Neu Vortex.- 7.3 Time-Dependent Strain.- 7.4 Melander-Zabusky-Styczek Model.- 7.5 Geometric Phase for Corotating Patches.- 7.6 Viscous Shear Layer Model.- 7.7 Bibliographic Notes.- 7.8 Exercises.- 8 Vortex Filament Models.- 8.1 Introduction to Vortex Filaments and the LIE.- 8.2 DaRios-Betchov Intrinsic Equations.- 8.3 Hasimoto's Transformation.- 8.4 LIA Invariants.- 8.5 Vortex-Stretching Models.- 8.6 Nearly Parallel Filaments.- 8.7 The Vorton Model.- 8.8 Exercises.- References.
Details
Erscheinungsjahr: 2001
Fachbereich: Mechanik & Akustik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Applied Mathematical Sciences
Inhalt: xviii
420 S.
82 s/w Illustr.
ISBN-13: 9780387952260
ISBN-10: 0387952268
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Newton, Paul K.
Hersteller: Springer New York
Springer US, New York, N.Y.
Applied Mathematical Sciences
Maße: 241 x 160 x 29 mm
Von/Mit: Paul K. Newton
Erscheinungsdatum: 25.05.2001
Gewicht: 0,828 kg
Artikel-ID: 105090494
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte