77,40 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Presents a single coherent treatment of the key knowledge about the liquid and supercritical fluid states
Provides comprehensive survey of key fluid properties from the latest experiments and applies our theoretical knowledge to understand the behaviour of these real fluids
Explores the consequences of recent advances in the field on our understanding in industry, nature, and in interdisciplinary research, including planetary science
Presents a single coherent treatment of the key knowledge about the liquid and supercritical fluid states
Provides comprehensive survey of key fluid properties from the latest experiments and applies our theoretical knowledge to understand the behaviour of these real fluids
Explores the consequences of recent advances in the field on our understanding in industry, nature, and in interdisciplinary research, including planetary science
John E. Proctor is a senior lecturer in physics at the University of Salford and is head of the Materials and Physics Research Group. He specialises in condensed matter physics, particularly the study of fluids and solids under extreme pressure and temperature, principally through X-ray and neutron diffraction along with optical spectroscopy. His research is regularly published in leading international peer-reviewed journals. He completed his Ph.D. (2007) from the University of Manchester and his [...]. (2004) from the University of Oxford. He is one of the authors of An Introduction to Graphene and Carbon Nanotubes (CRC Press, 2017).
Contents
Preface...................................................................................................xi
Useful Equations and Definitions.......................................................xv
Definitions.......................................................................................... xxi
1 Some Remarks on the Gas State
1.1 Equation of State (EOS) of Real Gases................................................................ 1
1.1.1 The Van der Waals Equation................................................................. 1
1.1.2 The Virial Equation.................................................................................2
1.2 Order in the Gas State............................................................................................3
1.3 Heat Capacity of Gases......................................................................................... 4
1.3.1 How Well Does This Model Work?...................................................... 4
1.4 Vibrational Raman Spectroscopy of Gases........................................................6
1.5 Viscosity of Gases...................................................................................................8
1.6 Why Are Liquids so Difficult?............................................................................ 10
1.6.1 Molecular Dynamics (MD)................................................................. 10
1.6.2 The Fundamental EOS (Section 3.3)....................................................11
1.6.3 Treat the Fluid as Gas-Like.................................................................. 12
1.6.4 Treat the Fluid as Solid-Like................................................................ 12
References.......................................................................................................................... 13
2 The Vapour Pressure Curve and the Liquid State Close to
the Vapour Pressure Curve
2.1 Classical Versus Quantum Liquids.................................................................... 15
2.2 The Transition Across the Vapour Pressure Curve......................................... 17
2.3 The Clausius-Clapeyron Equation.....................................................................19
2.3.1 Validity of the Clausius-Clapeyron Equation.................................. 20
2.4 The Critical Point................................................................................................. 20
2.4.1 Critical Constants and the Van Der Waals
Equation of State....................................................................................25
2.5 Summary............................................................................................................... 29
References......................................................................................................................... 30
3 Equations of State for Fluids
3.1 Cubic EOS Based on the Van der Waals Equation..........................................32
3.1.1 Volume Translation of Cubic EOS..................................................... 34
3.2 The Carnahan-Starling EOS...............................................................................35
3.3 The Fundamental EOS........................................................................................ 36
3.3.1 Ideal Gas Component of the Helmholtz Function.......................... 36
3.3.2 Residual Component of the Helmholtz Function............................39
3.3.3 Fitting the Helmholtz Function to the
Experimental Data................................................................................39
3.4 Conclusions...........................................................................................................41
3.4.1 For What Fluids Is a Fundamental EOS Available?.........................41
3.4.2 How Can We Test the Validity of an EOS?........................................41
3.4.3 What Is the Best Way to Implement Your
Chosen EOS? ............................................................................................................... 44
References......................................................................................................................... 46
4 The Liquid State Close to the Melting Curve (I):
Static Properties
4.1 Density and Bulk Modulus of Fluids Close to the Melting Curve............... 47
4.1.1 Density of Fluid Ar Close to the Melting Curve.............................. 48
4.1.2 Density and Bulk Modulus of Fluid N2 Close to
the Melting Curve................................................................................ 49
4.2 Elastic Neutron and X-ray Diffraction from Liquids Close to the
Melting Curve....................................................................................................... 51
4.2.1 Distinctions Between X-ray and Neutron
Diffraction Experiments......................................................................53
4.2.2 Fourier Transform of Fluid Diffraction Data
to Obtain g (r) ....................................................................................55
4.2.3 Fourier Transform of Modified Fluid Diffraction Data
to Obtain g (r) ..................................................................................................58
4.2.4 Comparison of Diffraction Data to Simulated Fluid
Structures in Reciprocal Space............................................................61
4.2.5 Relation Between g (r), the Partition Function, Internal
Energy, and Pressure.............................................................................63
4.2.6 Relation Between g (r) and Entropy....................................................65
4.2.7 Relation Between g (r) and Co-ordination Number (CN)............. 66
4.3 Short-Range Order and Phase Transitions in Fluids Close to the
Melting Curve...................................................................................................... 67
4.3.1 Co-ordination Number....................................................................... 67
4.3.2 Liquid-Liquid Phase Transitions........................................................ 67
4.4 Equations to Fit the Melting Curve on the P,T Phase Diagram................... 69
4.5 What Happens to the Melting Curve in the High P,T Limit?........................72
4.6 Summary................................................................................................................74
References..........................................................................................................................77
5 The Liquid State Close to the Melting Curve (II):
Dynamic Properties
5.1 Phonon Theory of Liquids...................................................................................79
5.1.1 Frenkel and Maxwell Models..............................................................79
5.1.2 Prediction of Liquid Heat Capacity....................................................82
5.2 Raman Spectroscopy of Liquids and Supercritical Fluids
Close to the Melting Curve................................................................................ 88
5.2.1 Grüneisen Model for Vibrational Raman
Peak Position ........................................................................................................................90
5.2.2 Hard Sphere Fluid Theory of Vibrational
Raman Peak Positions.......................................................................... 91
5.2.3 Peak Position of Rotational Raman Spectra.....................................93
5.2.4 Peak Intensity and Linewidth of Fluid Raman Spectra..................93
5.2.5 Prediction of Fluid Raman Spectra Using MD............................... 94
5.3 Brillouin Spectroscopy of Liquids Close to the Melting Curve................... 96
5.4 Inelastic Neutron and X-ray Scattering from Liquids Close to
the Melting Curve................................................................................................ 98
5.4.1 Distinction Between Neutron and X-ray Scattering....................... 98
5.4.2 The Scattered Intensity........................................................................101
5.4.3 What Can We Learn from Inelastic Neutron and X-ray
Scattering from Liquids?.................................................................... 103
5.5 Summary and Outlook......................................................................................107
References........................................................................................................................108
6 Beyond the Critical Point
6.1 The Widom Lines................................................................................................. 111
6.1.1 A Simple Phenomenological Fitting Procedure for
the Widom Lines..................................................................................114
6.1.2 Some Examples of Widom Line Paths..............................................117
6.1.3 The Widom Lines as a Function of
Reduced...
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Atomphysik & Kernphysik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9780367549350 |
ISBN-10: | 0367549352 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Proctor, John E. |
Hersteller: | CRC Press |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 16 mm |
Von/Mit: | John E. Proctor |
Erscheinungsdatum: | 29.04.2022 |
Gewicht: | 0,462 kg |
John E. Proctor is a senior lecturer in physics at the University of Salford and is head of the Materials and Physics Research Group. He specialises in condensed matter physics, particularly the study of fluids and solids under extreme pressure and temperature, principally through X-ray and neutron diffraction along with optical spectroscopy. His research is regularly published in leading international peer-reviewed journals. He completed his Ph.D. (2007) from the University of Manchester and his [...]. (2004) from the University of Oxford. He is one of the authors of An Introduction to Graphene and Carbon Nanotubes (CRC Press, 2017).
Contents
Preface...................................................................................................xi
Useful Equations and Definitions.......................................................xv
Definitions.......................................................................................... xxi
1 Some Remarks on the Gas State
1.1 Equation of State (EOS) of Real Gases................................................................ 1
1.1.1 The Van der Waals Equation................................................................. 1
1.1.2 The Virial Equation.................................................................................2
1.2 Order in the Gas State............................................................................................3
1.3 Heat Capacity of Gases......................................................................................... 4
1.3.1 How Well Does This Model Work?...................................................... 4
1.4 Vibrational Raman Spectroscopy of Gases........................................................6
1.5 Viscosity of Gases...................................................................................................8
1.6 Why Are Liquids so Difficult?............................................................................ 10
1.6.1 Molecular Dynamics (MD)................................................................. 10
1.6.2 The Fundamental EOS (Section 3.3)....................................................11
1.6.3 Treat the Fluid as Gas-Like.................................................................. 12
1.6.4 Treat the Fluid as Solid-Like................................................................ 12
References.......................................................................................................................... 13
2 The Vapour Pressure Curve and the Liquid State Close to
the Vapour Pressure Curve
2.1 Classical Versus Quantum Liquids.................................................................... 15
2.2 The Transition Across the Vapour Pressure Curve......................................... 17
2.3 The Clausius-Clapeyron Equation.....................................................................19
2.3.1 Validity of the Clausius-Clapeyron Equation.................................. 20
2.4 The Critical Point................................................................................................. 20
2.4.1 Critical Constants and the Van Der Waals
Equation of State....................................................................................25
2.5 Summary............................................................................................................... 29
References......................................................................................................................... 30
3 Equations of State for Fluids
3.1 Cubic EOS Based on the Van der Waals Equation..........................................32
3.1.1 Volume Translation of Cubic EOS..................................................... 34
3.2 The Carnahan-Starling EOS...............................................................................35
3.3 The Fundamental EOS........................................................................................ 36
3.3.1 Ideal Gas Component of the Helmholtz Function.......................... 36
3.3.2 Residual Component of the Helmholtz Function............................39
3.3.3 Fitting the Helmholtz Function to the
Experimental Data................................................................................39
3.4 Conclusions...........................................................................................................41
3.4.1 For What Fluids Is a Fundamental EOS Available?.........................41
3.4.2 How Can We Test the Validity of an EOS?........................................41
3.4.3 What Is the Best Way to Implement Your
Chosen EOS? ............................................................................................................... 44
References......................................................................................................................... 46
4 The Liquid State Close to the Melting Curve (I):
Static Properties
4.1 Density and Bulk Modulus of Fluids Close to the Melting Curve............... 47
4.1.1 Density of Fluid Ar Close to the Melting Curve.............................. 48
4.1.2 Density and Bulk Modulus of Fluid N2 Close to
the Melting Curve................................................................................ 49
4.2 Elastic Neutron and X-ray Diffraction from Liquids Close to the
Melting Curve....................................................................................................... 51
4.2.1 Distinctions Between X-ray and Neutron
Diffraction Experiments......................................................................53
4.2.2 Fourier Transform of Fluid Diffraction Data
to Obtain g (r) ....................................................................................55
4.2.3 Fourier Transform of Modified Fluid Diffraction Data
to Obtain g (r) ..................................................................................................58
4.2.4 Comparison of Diffraction Data to Simulated Fluid
Structures in Reciprocal Space............................................................61
4.2.5 Relation Between g (r), the Partition Function, Internal
Energy, and Pressure.............................................................................63
4.2.6 Relation Between g (r) and Entropy....................................................65
4.2.7 Relation Between g (r) and Co-ordination Number (CN)............. 66
4.3 Short-Range Order and Phase Transitions in Fluids Close to the
Melting Curve...................................................................................................... 67
4.3.1 Co-ordination Number....................................................................... 67
4.3.2 Liquid-Liquid Phase Transitions........................................................ 67
4.4 Equations to Fit the Melting Curve on the P,T Phase Diagram................... 69
4.5 What Happens to the Melting Curve in the High P,T Limit?........................72
4.6 Summary................................................................................................................74
References..........................................................................................................................77
5 The Liquid State Close to the Melting Curve (II):
Dynamic Properties
5.1 Phonon Theory of Liquids...................................................................................79
5.1.1 Frenkel and Maxwell Models..............................................................79
5.1.2 Prediction of Liquid Heat Capacity....................................................82
5.2 Raman Spectroscopy of Liquids and Supercritical Fluids
Close to the Melting Curve................................................................................ 88
5.2.1 Grüneisen Model for Vibrational Raman
Peak Position ........................................................................................................................90
5.2.2 Hard Sphere Fluid Theory of Vibrational
Raman Peak Positions.......................................................................... 91
5.2.3 Peak Position of Rotational Raman Spectra.....................................93
5.2.4 Peak Intensity and Linewidth of Fluid Raman Spectra..................93
5.2.5 Prediction of Fluid Raman Spectra Using MD............................... 94
5.3 Brillouin Spectroscopy of Liquids Close to the Melting Curve................... 96
5.4 Inelastic Neutron and X-ray Scattering from Liquids Close to
the Melting Curve................................................................................................ 98
5.4.1 Distinction Between Neutron and X-ray Scattering....................... 98
5.4.2 The Scattered Intensity........................................................................101
5.4.3 What Can We Learn from Inelastic Neutron and X-ray
Scattering from Liquids?.................................................................... 103
5.5 Summary and Outlook......................................................................................107
References........................................................................................................................108
6 Beyond the Critical Point
6.1 The Widom Lines................................................................................................. 111
6.1.1 A Simple Phenomenological Fitting Procedure for
the Widom Lines..................................................................................114
6.1.2 Some Examples of Widom Line Paths..............................................117
6.1.3 The Widom Lines as a Function of
Reduced...
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Atomphysik & Kernphysik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9780367549350 |
ISBN-10: | 0367549352 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Proctor, John E. |
Hersteller: | CRC Press |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 234 x 156 x 16 mm |
Von/Mit: | John E. Proctor |
Erscheinungsdatum: | 29.04.2022 |
Gewicht: | 0,462 kg |