Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Solution Techniques for Elementary Partial Differential Equations
Taschenbuch von Christian Constanda
Sprache: Englisch

71,90 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
"In my opinion, this is quite simply the best book of its kind that I have seen thus far."
-Professor Peter Schiavone, University of Alberta, from the Foreword to the Fourth Edition

Praise for the previous editions

An ideal tool for students taking a first course in PDEs, as well as for the lecturers who teach such courses."
-Marian Aron, Plymouth University, UK

"This is one of the best books on elementary PDEs this reviewer has read so far. Highly recommended."
-CHOICE

Solution Techniques for Elementary Partial Differential Equations, Fourth Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). It provides a streamlined, direct approach to developing students' competence in solving PDEs, and offers concise, easily understood explanations and worked examples that enable students to see the techniques in action.

New to the Fourth Edition

Two additional sections

A larger number and variety of worked examples and exercises

A companion pdf file containing more detailed worked examples to supplement those in the book, which can be used in the classroom and as an aid to online teaching
"In my opinion, this is quite simply the best book of its kind that I have seen thus far."
-Professor Peter Schiavone, University of Alberta, from the Foreword to the Fourth Edition

Praise for the previous editions

An ideal tool for students taking a first course in PDEs, as well as for the lecturers who teach such courses."
-Marian Aron, Plymouth University, UK

"This is one of the best books on elementary PDEs this reviewer has read so far. Highly recommended."
-CHOICE

Solution Techniques for Elementary Partial Differential Equations, Fourth Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). It provides a streamlined, direct approach to developing students' competence in solving PDEs, and offers concise, easily understood explanations and worked examples that enable students to see the techniques in action.

New to the Fourth Edition

Two additional sections

A larger number and variety of worked examples and exercises

A companion pdf file containing more detailed worked examples to supplement those in the book, which can be used in the classroom and as an aid to online teaching
Über den Autor

Christian Constanda, MS, PhD, DSc, is the Charles W. Oliphant Endowed Chair in Mathematical Sciences and director of the Center for Boundary Integral Methods at the University of Tulsa. He is also an emeritus professor at the University of Strathclyde and chairman of the International Consortium on Integral Methods in Science and Engineering. He is the author/editor of more than 30 books and more than 150 journal papers. His research interests include boundary value problems for elastic plates with transverse shear deformation, direct and indirect integral equation methods for elliptic problems and time-dependent problems, and variational methods in elasticity.

Inhaltsverzeichnis

1. Ordinary Differential Equations: Brief Review. 1.1. First-Order Equations. 1.2. Homogeneous Linear Equations with Constant Coefficients. 1.3. Nonhomogeneous Linear Equations with Constant Coefficients. 1.4. Cauchy-Euler Equations. 1.5. Functions and Operators. 2. Fourier Series. 2.1. The Full Fourier Series. 2.2. Fourier Sine and Cosine Series. 2.3. Convergence and Differentiation. 2.4. Series Expansion of More General Functions. 3. Sturm-Liouville Problems. 3.1. Regular Sturm-Liouville Problems. 3.2. Other Problems. 3.3. Bessel Functions. 3.4. Legendre Polynomials. 3.5. Spherical Harmonics. 4. Some Fundamental Equations of Mathematical Physics. 4.1. The Heat Equation. 4.2 The Laplace Equation. 4.3. The Wave Equation. 4.4. Other Equations. 5. The Method of Separation of Variables. 5.1. The Heat Equation. 5.2. The Wave Equation. 5.3. The Laplace Equation. 5.4. Other Equations. 5.5. Equations with More than Two Variables. 6. Linear Nonhomogeneous Problems. 6.1. Equilibrium Solutions. 6.2. Nonhomogeneous Problems. 7. The Method of Eigenfunction Expansion. 7.1. The Nonhomogeneous Heat Equation. 7.2. The Nonhomogeneous Wave Equation. 7.3. The Nonhomogeneous Laplace Equation. 7.4. Other Nonhomogeneous Equations. 8. The Fourier Transformations. 8.1. The Full Fourier Transformation. 8.2. The Fourier Sine and Cosine Transformations. 8.3. Other Applications. 9. The Laplace Transformation. 9.1. Definition and Properties. 9.2. Applications. 10. The Method of Green's Functions. 10.1. The Heat Equation. 10.2. The Laplace Equation. 10.3. The Wave Equation. 11. General Second-Order Linear Equations. 11.1. The Canonical Form. 11.2. Hyperbolic Equations. 11.3. Parabolic Equations. 11.4. Elliptic Equations. 11.5. Other Problems. 12. The Method of Characteristics. 12.1. First-Order Linear Equations. 12.2. First-Order Quasilinear Equations. 12.3. The One-Dimensional Wave Equation. 12.4. Other Hyperbolic Equations. 13. Perturbation and Asymptotic Methods. 13.1. Asymptotic Series. 13.2. Regular Perturbation Problems. 13.3. Singular Perturbation Problems. 14. Complex Variable Methods. 14.1. Elliptic Equations. 14.2. Systems of Equations. Appendices.

Details
Erscheinungsjahr: 2022
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032000312
ISBN-10: 1032000317
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Constanda, Christian
Auflage: 4. Auflage
Hersteller: Chapman and Hall/CRC
Maße: 234 x 156 x 24 mm
Von/Mit: Christian Constanda
Erscheinungsdatum: 10.08.2022
Gewicht: 0,667 kg
Artikel-ID: 121657246
Über den Autor

Christian Constanda, MS, PhD, DSc, is the Charles W. Oliphant Endowed Chair in Mathematical Sciences and director of the Center for Boundary Integral Methods at the University of Tulsa. He is also an emeritus professor at the University of Strathclyde and chairman of the International Consortium on Integral Methods in Science and Engineering. He is the author/editor of more than 30 books and more than 150 journal papers. His research interests include boundary value problems for elastic plates with transverse shear deformation, direct and indirect integral equation methods for elliptic problems and time-dependent problems, and variational methods in elasticity.

Inhaltsverzeichnis

1. Ordinary Differential Equations: Brief Review. 1.1. First-Order Equations. 1.2. Homogeneous Linear Equations with Constant Coefficients. 1.3. Nonhomogeneous Linear Equations with Constant Coefficients. 1.4. Cauchy-Euler Equations. 1.5. Functions and Operators. 2. Fourier Series. 2.1. The Full Fourier Series. 2.2. Fourier Sine and Cosine Series. 2.3. Convergence and Differentiation. 2.4. Series Expansion of More General Functions. 3. Sturm-Liouville Problems. 3.1. Regular Sturm-Liouville Problems. 3.2. Other Problems. 3.3. Bessel Functions. 3.4. Legendre Polynomials. 3.5. Spherical Harmonics. 4. Some Fundamental Equations of Mathematical Physics. 4.1. The Heat Equation. 4.2 The Laplace Equation. 4.3. The Wave Equation. 4.4. Other Equations. 5. The Method of Separation of Variables. 5.1. The Heat Equation. 5.2. The Wave Equation. 5.3. The Laplace Equation. 5.4. Other Equations. 5.5. Equations with More than Two Variables. 6. Linear Nonhomogeneous Problems. 6.1. Equilibrium Solutions. 6.2. Nonhomogeneous Problems. 7. The Method of Eigenfunction Expansion. 7.1. The Nonhomogeneous Heat Equation. 7.2. The Nonhomogeneous Wave Equation. 7.3. The Nonhomogeneous Laplace Equation. 7.4. Other Nonhomogeneous Equations. 8. The Fourier Transformations. 8.1. The Full Fourier Transformation. 8.2. The Fourier Sine and Cosine Transformations. 8.3. Other Applications. 9. The Laplace Transformation. 9.1. Definition and Properties. 9.2. Applications. 10. The Method of Green's Functions. 10.1. The Heat Equation. 10.2. The Laplace Equation. 10.3. The Wave Equation. 11. General Second-Order Linear Equations. 11.1. The Canonical Form. 11.2. Hyperbolic Equations. 11.3. Parabolic Equations. 11.4. Elliptic Equations. 11.5. Other Problems. 12. The Method of Characteristics. 12.1. First-Order Linear Equations. 12.2. First-Order Quasilinear Equations. 12.3. The One-Dimensional Wave Equation. 12.4. Other Hyperbolic Equations. 13. Perturbation and Asymptotic Methods. 13.1. Asymptotic Series. 13.2. Regular Perturbation Problems. 13.3. Singular Perturbation Problems. 14. Complex Variable Methods. 14.1. Elliptic Equations. 14.2. Systems of Equations. Appendices.

Details
Erscheinungsjahr: 2022
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032000312
ISBN-10: 1032000317
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Constanda, Christian
Auflage: 4. Auflage
Hersteller: Chapman and Hall/CRC
Maße: 234 x 156 x 24 mm
Von/Mit: Christian Constanda
Erscheinungsdatum: 10.08.2022
Gewicht: 0,667 kg
Artikel-ID: 121657246
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte