Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Honesty in voting, it turns out, is not always the best policy. Indeed, in the early 1970s, Allan Gibbard and Mark Satterthwaite, building on the seminal work of Nobel laureate Kenneth Arrow, proved that with three or more alternatives there is no reasonable voting system that is non-manipulable; voters will always have an opportunity to benefit by submitting a disingenuous ballot. The ensuing decades produced a number of theorems of striking mathematical naturality that dealt with the manipulability of voting systems. This 2005 book presents many of these results from the last quarter of the twentieth century, especially the contributions of economists and philosophers, from a mathematical point of view, with many new proofs. The presentation is almost completely self-contained, and requires no prerequisites except a willingness to follow rigorous mathematical arguments. Mathematics students, as well as mathematicians, political scientists, economists and philosophers will learn why it is impossible to devise a completely unmanipulable voting system.
Honesty in voting, it turns out, is not always the best policy. Indeed, in the early 1970s, Allan Gibbard and Mark Satterthwaite, building on the seminal work of Nobel laureate Kenneth Arrow, proved that with three or more alternatives there is no reasonable voting system that is non-manipulable; voters will always have an opportunity to benefit by submitting a disingenuous ballot. The ensuing decades produced a number of theorems of striking mathematical naturality that dealt with the manipulability of voting systems. This 2005 book presents many of these results from the last quarter of the twentieth century, especially the contributions of economists and philosophers, from a mathematical point of view, with many new proofs. The presentation is almost completely self-contained, and requires no prerequisites except a willingness to follow rigorous mathematical arguments. Mathematics students, as well as mathematicians, political scientists, economists and philosophers will learn why it is impossible to devise a completely unmanipulable voting system.
Inhaltsverzeichnis
1. Introduction; 2. The Gibbard¿Satterthwaite theorem; 3. Additional results for single-valued elections; 4. The Duggan¿Schwartz theorem; 5. Additional results for multi-valued elections; 6. Ballots that rank sets; 7. Elections with outcomes that are lotteries; 8. Elections with variable agendas; References; Index.
Details
Erscheinungsjahr: 2012
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Buch
ISBN-13: 9780521810524
ISBN-10: 0521810523
Sprache: Englisch
Einband: Gebunden
Autor: Taylor, Alan D.
Redaktion: Graham, Ronald
Barrow, John
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 15 mm
Von/Mit: Alan D. Taylor
Erscheinungsdatum: 01.08.2012
Gewicht: 0,434 kg
Artikel-ID: 102132014

Ähnliche Produkte