Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Regularity Theory for Mean Curvature Flow
Taschenbuch von Klaus Ecker
Sprache: Englisch

117,69 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow.

* Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow.

* Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
Zusammenfassung

Mean curvature flow and related flows are important tools in mathematics and mathematical physics. For example, the famous Penrose conjecture in general relativity by Huisken and Ilmanan was based on a curvature flow approach. Under mean curvature flow, surfaces usually develop singularities in finite time. This book presents techniques in the study of singularities of mean curvature flow. It details the influential work of K. Brakke as well as such recent developments as relations to regularity theory for minimal surfaces, as in Allard's and de Giorgi's work.

Inhaltsverzeichnis
1 Introduction.- 2 Special Solutions and Global Behaviour.- 3 Local Estimates via the Maximum Principle.- 4 Integral Estimates and Monotonicity Formulas.- 5 Regularity Theory at the First Singular Time.- A Geometry of Hypersurfaces.- B Derivation of the Evolution Equations.- C Background on Geometric Measure Theory.- D Local Results for Minimal Hypersurfaces.- E Remarks on Brakke¡¯s Clearing Out Lemma.- F Local Monotonicity in Closed Form.
Details
Erscheinungsjahr: 2004
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Inhalt: xiii
165 S.
ISBN-13: 9780817637811
ISBN-10: 0817637818
Sprache: Englisch
Herstellernummer: 10977255
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Ecker, Klaus
Auflage: Softcover reprint of the original 1st ed. 2004
Hersteller: Birkh„user Boston
Birkhäuser Boston
Progress in Nonlinear Differential Equations and Their Applications
Maße: 235 x 155 x 11 mm
Von/Mit: Klaus Ecker
Erscheinungsdatum: 13.07.2004
Gewicht: 0,289 kg
Artikel-ID: 102437364
Zusammenfassung

Mean curvature flow and related flows are important tools in mathematics and mathematical physics. For example, the famous Penrose conjecture in general relativity by Huisken and Ilmanan was based on a curvature flow approach. Under mean curvature flow, surfaces usually develop singularities in finite time. This book presents techniques in the study of singularities of mean curvature flow. It details the influential work of K. Brakke as well as such recent developments as relations to regularity theory for minimal surfaces, as in Allard's and de Giorgi's work.

Inhaltsverzeichnis
1 Introduction.- 2 Special Solutions and Global Behaviour.- 3 Local Estimates via the Maximum Principle.- 4 Integral Estimates and Monotonicity Formulas.- 5 Regularity Theory at the First Singular Time.- A Geometry of Hypersurfaces.- B Derivation of the Evolution Equations.- C Background on Geometric Measure Theory.- D Local Results for Minimal Hypersurfaces.- E Remarks on Brakke¡¯s Clearing Out Lemma.- F Local Monotonicity in Closed Form.
Details
Erscheinungsjahr: 2004
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Inhalt: xiii
165 S.
ISBN-13: 9780817637811
ISBN-10: 0817637818
Sprache: Englisch
Herstellernummer: 10977255
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Ecker, Klaus
Auflage: Softcover reprint of the original 1st ed. 2004
Hersteller: Birkh„user Boston
Birkhäuser Boston
Progress in Nonlinear Differential Equations and Their Applications
Maße: 235 x 155 x 11 mm
Von/Mit: Klaus Ecker
Erscheinungsdatum: 13.07.2004
Gewicht: 0,289 kg
Artikel-ID: 102437364
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte