101,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Receptors in the Evolution and Development of the Brain: Matter into Mind presents the key role of receptors and their cognate ligands in wiring the mammalian brain from an evolutionary developmental biology perspective. It examines receptor function in the evolution and development of the nervous system in the large vertebrate brain, and discusses rapid eye movement sleep and apoptosis as mechanisms to destroy miswired neurons. Possible links between trophic deficits and connectional diseases including Alzheimer's, Parkinson's, and ALS are also discussed. This book is extremely useful to those with an interest in the molecular and cellular neurosciences, including those in cognitive and clinical branches of this subject, and anyone interested in how the incredibly complex human brain can build itself.
Receptors in the Evolution and Development of the Brain: Matter into Mind presents the key role of receptors and their cognate ligands in wiring the mammalian brain from an evolutionary developmental biology perspective. It examines receptor function in the evolution and development of the nervous system in the large vertebrate brain, and discusses rapid eye movement sleep and apoptosis as mechanisms to destroy miswired neurons. Possible links between trophic deficits and connectional diseases including Alzheimer's, Parkinson's, and ALS are also discussed. This book is extremely useful to those with an interest in the molecular and cellular neurosciences, including those in cognitive and clinical branches of this subject, and anyone interested in how the incredibly complex human brain can build itself.
1. Classes of Receptors, Their Signaling Pathways and Their Synthesis and Transport2. The RNA World and Roles of Receptors and Their Cognate Ligands in Archaea, Bacteria and Choanoflagellates; the latter being the Ancestor of all Eukaryotes3. Dictyostelium Discoideum: Role of Receptors in Differentiation. Sponges are Among the Earliest Multicellular Animals while Comb Jellies are Thought to be Closest to the Ancestral Nerve Cell Containing Animal. Hydras are Among the Earliest Animals with a True Nervous System4. The Growth Cone; the Key Organelle in the Steering of the Neuronal Processes; The Synapse; Role in Neurotransmitter Release5. Neuronal Cell Biology6. Glial Cells; The Evolution of the Myelinated Axon; Blood Brain Barrier (BBB)7. A Testable Theory to Explain How the Wiring of the Brain Occurs8. The Development of the Cerebral Cortex9. The Importance of Rapid Eye Movement (REM) Sleep and Other Forms of Sleep in Selecting the Appropriate Neuronal Circuitry; Programmed Cell Death/Apoptosis10. The Key Roles of BDNF and Endocannabinoids at Various Stages of Brain Development Including Neuronal Commitment, Migration and Synaptogenesis11. The Key Roles of Axon and Dendrite Guidance Molecules and the Extracellular Matrix in All Stages of Brain Development12. Key Receptors involved in Laminar and Terminal Specification and Synapse Construction13. Steroid Hormones and their Receptors are Key to Sexual Differentiation of the Brain while Glucocorticoids and their Receptors are Key Components of Brain Development and Stress Tolerance; The Hypothalamic Hormone Producing Cells: Importance in Various Functions During and After Brain Development14. The Roles of Receptors and Trophic Factors in the Development of the Enteric Nervous System (ENT) and in the Connections between Viruses, the Microbiota, (ENT) and Brain15. Synaptic Pruning During Development and Throughout Life Depends on Trophic Factor Interactions: The Corollary Described in Chapter 14, Postulating the Quantization of Trophic Factor Requirements, Provides a Plausible Explanation for the Survival of Neurons Partially Deprived of their Full Complement of Trophic Factors16. Receptor Mediated Mechanisms for Drugs of Abuse which may Adversely Affect Brain Development17. Role of Trophic Factors and Receptors in Developmental Brain Disorders18. Trophic Factor-Receptor Interactions which Mediate Neuronal Survival can in Some Cases Last Through Life, and Trophic Deficits can Produce Connectional Neurodegenerative Diseases 19. Potential Use of Neuronal Stem Cells to Replace Dying Neurons Depends on Trophic Factors and Receptors20. The Key Roles of Axon and Dendrite Guidance Molecules and the Extracellular Matrix in All Stages of Brain Development
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Biologie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780128110126 |
ISBN-10: | 0128110120 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Fine, Richard E |
Hersteller: | Elsevier Science |
Maße: | 231 x 191 x 15 mm |
Von/Mit: | Richard E Fine |
Erscheinungsdatum: | 18.06.2019 |
Gewicht: | 0,612 kg |
1. Classes of Receptors, Their Signaling Pathways and Their Synthesis and Transport2. The RNA World and Roles of Receptors and Their Cognate Ligands in Archaea, Bacteria and Choanoflagellates; the latter being the Ancestor of all Eukaryotes3. Dictyostelium Discoideum: Role of Receptors in Differentiation. Sponges are Among the Earliest Multicellular Animals while Comb Jellies are Thought to be Closest to the Ancestral Nerve Cell Containing Animal. Hydras are Among the Earliest Animals with a True Nervous System4. The Growth Cone; the Key Organelle in the Steering of the Neuronal Processes; The Synapse; Role in Neurotransmitter Release5. Neuronal Cell Biology6. Glial Cells; The Evolution of the Myelinated Axon; Blood Brain Barrier (BBB)7. A Testable Theory to Explain How the Wiring of the Brain Occurs8. The Development of the Cerebral Cortex9. The Importance of Rapid Eye Movement (REM) Sleep and Other Forms of Sleep in Selecting the Appropriate Neuronal Circuitry; Programmed Cell Death/Apoptosis10. The Key Roles of BDNF and Endocannabinoids at Various Stages of Brain Development Including Neuronal Commitment, Migration and Synaptogenesis11. The Key Roles of Axon and Dendrite Guidance Molecules and the Extracellular Matrix in All Stages of Brain Development12. Key Receptors involved in Laminar and Terminal Specification and Synapse Construction13. Steroid Hormones and their Receptors are Key to Sexual Differentiation of the Brain while Glucocorticoids and their Receptors are Key Components of Brain Development and Stress Tolerance; The Hypothalamic Hormone Producing Cells: Importance in Various Functions During and After Brain Development14. The Roles of Receptors and Trophic Factors in the Development of the Enteric Nervous System (ENT) and in the Connections between Viruses, the Microbiota, (ENT) and Brain15. Synaptic Pruning During Development and Throughout Life Depends on Trophic Factor Interactions: The Corollary Described in Chapter 14, Postulating the Quantization of Trophic Factor Requirements, Provides a Plausible Explanation for the Survival of Neurons Partially Deprived of their Full Complement of Trophic Factors16. Receptor Mediated Mechanisms for Drugs of Abuse which may Adversely Affect Brain Development17. Role of Trophic Factors and Receptors in Developmental Brain Disorders18. Trophic Factor-Receptor Interactions which Mediate Neuronal Survival can in Some Cases Last Through Life, and Trophic Deficits can Produce Connectional Neurodegenerative Diseases 19. Potential Use of Neuronal Stem Cells to Replace Dying Neurons Depends on Trophic Factors and Receptors20. The Key Roles of Axon and Dendrite Guidance Molecules and the Extracellular Matrix in All Stages of Brain Development
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Biologie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9780128110126 |
ISBN-10: | 0128110120 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Fine, Richard E |
Hersteller: | Elsevier Science |
Maße: | 231 x 191 x 15 mm |
Von/Mit: | Richard E Fine |
Erscheinungsdatum: | 18.06.2019 |
Gewicht: | 0,612 kg |