149,79 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
S. Armstrong: Currently Associate Professor at the Courant Institute at NYU. Received his PhD from University of California, Berkeley, in 2009 and previously held positions at Louisiana State University, The University of Chicago, Univ. of Wisconsin-Madison and the University of Paris-Dauphine with the CNRS.
T. Kuusi: Currently Professor at the University of Helsinki. He previously held positions at the University of Oulu and Aalto University. Received his PhD from Aalto University in 2007.
J.-C. Mourrat: Currently CNRS research scientist at Ecole Normale Supérieure in Paris. Previously held positions at ENS Lyon and EPFL in Lausanne. Received his PhD in 2010 jointly from Aix-Marseille University and PUC in Santiago, Chile.
First book focusing on stochastic (as opposed to periodic) homogenization, presenting the quantitative theory, and exposing the renormalization approach to stochastic homogenization
Collects the essential ideas and results of the theory of quantitative stochastic homogenization, including the optimal error estimates and scaling limit of the first-order correctors to a variant of the Gaussian free field
Proves for the first time important new results, including optimal estimates for the first-order correctors in negative Sobolev spaces, optimal error estimates for Dirichlet and Neumann problems and the optimal quantitative description of the parabolic and elliptic Green functions
Contains an original construction and interpretation of the Gaussian free field and the functional spaces to which it belongs, and an elementary new derivation of the heat kernel formulation of Sobolev space norms
Preface.- Assumptions and examples.- Frequently asked questions.- Notation.- Introduction and qualitative theory.- Convergence of the subadditive quantities.- Regularity on large scales.- Quantitative description of first-order correctors.- Scaling limits of first-order correctors.- Quantitative two-scale expansions.- Calderon-Zygmund gradient L^p estimates.- Estimates for parabolic problems.- Decay of the parabolic semigroup.- Linear equations with nonsymmetric coefficients.- Nonlinear equations.- Appendices: A.The O_s notation.- B.Function spaces and elliptic equations on Lipschitz domains.- C.The Meyers L^{2+\delta} estimate.- D. Sobolev norms and heat flow.- Parabolic Green functions.- Bibliography.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Grundlehren der mathematischen Wissenschaften |
Inhalt: |
xxxviii
518 S. 426 s/w Illustr. 4 farbige Illustr. 518 p. 430 illus. 4 illus. in color. |
ISBN-13: | 9783030155445 |
ISBN-10: | 3030155447 |
Sprache: | Englisch |
Herstellernummer: | 978-3-030-15544-5 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Armstrong, Scott
Mourrat, Jean-Christophe Kuusi, Tuomo |
Auflage: | 1st ed. 2019 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Grundlehren der mathematischen Wissenschaften |
Maße: | 241 x 160 x 36 mm |
Von/Mit: | Scott Armstrong (u. a.) |
Erscheinungsdatum: | 27.05.2019 |
Gewicht: | 0,992 kg |
S. Armstrong: Currently Associate Professor at the Courant Institute at NYU. Received his PhD from University of California, Berkeley, in 2009 and previously held positions at Louisiana State University, The University of Chicago, Univ. of Wisconsin-Madison and the University of Paris-Dauphine with the CNRS.
T. Kuusi: Currently Professor at the University of Helsinki. He previously held positions at the University of Oulu and Aalto University. Received his PhD from Aalto University in 2007.
J.-C. Mourrat: Currently CNRS research scientist at Ecole Normale Supérieure in Paris. Previously held positions at ENS Lyon and EPFL in Lausanne. Received his PhD in 2010 jointly from Aix-Marseille University and PUC in Santiago, Chile.
First book focusing on stochastic (as opposed to periodic) homogenization, presenting the quantitative theory, and exposing the renormalization approach to stochastic homogenization
Collects the essential ideas and results of the theory of quantitative stochastic homogenization, including the optimal error estimates and scaling limit of the first-order correctors to a variant of the Gaussian free field
Proves for the first time important new results, including optimal estimates for the first-order correctors in negative Sobolev spaces, optimal error estimates for Dirichlet and Neumann problems and the optimal quantitative description of the parabolic and elliptic Green functions
Contains an original construction and interpretation of the Gaussian free field and the functional spaces to which it belongs, and an elementary new derivation of the heat kernel formulation of Sobolev space norms
Preface.- Assumptions and examples.- Frequently asked questions.- Notation.- Introduction and qualitative theory.- Convergence of the subadditive quantities.- Regularity on large scales.- Quantitative description of first-order correctors.- Scaling limits of first-order correctors.- Quantitative two-scale expansions.- Calderon-Zygmund gradient L^p estimates.- Estimates for parabolic problems.- Decay of the parabolic semigroup.- Linear equations with nonsymmetric coefficients.- Nonlinear equations.- Appendices: A.The O_s notation.- B.Function spaces and elliptic equations on Lipschitz domains.- C.The Meyers L^{2+\delta} estimate.- D. Sobolev norms and heat flow.- Parabolic Green functions.- Bibliography.- Index.
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Grundlehren der mathematischen Wissenschaften |
Inhalt: |
xxxviii
518 S. 426 s/w Illustr. 4 farbige Illustr. 518 p. 430 illus. 4 illus. in color. |
ISBN-13: | 9783030155445 |
ISBN-10: | 3030155447 |
Sprache: | Englisch |
Herstellernummer: | 978-3-030-15544-5 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Armstrong, Scott
Mourrat, Jean-Christophe Kuusi, Tuomo |
Auflage: | 1st ed. 2019 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Grundlehren der mathematischen Wissenschaften |
Maße: | 241 x 160 x 36 mm |
Von/Mit: | Scott Armstrong (u. a.) |
Erscheinungsdatum: | 27.05.2019 |
Gewicht: | 0,992 kg |