Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
60,00 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Take tiny steps to enter the big world of data science through this interesting guide
Key Features:Learn the fundamentals of machine learning and build your own intelligent applications
Master the art of building your own machine learning systems with this example-based practical guide
Work with important classification and regression algorithms and other machine learning techniques
Book Description:
Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.
This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.
Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
What You Will Learn:Exploit the power of Python to handle data extraction, manipulation, and exploration techniques
Use Python to visualize data spread across multiple dimensions and extract useful features
Dive deep into the world of analytics to predict situations correctly
Implement machine learning classification and regression algorithms from scratch in Python
Be amazed to see the algorithms in action
Evaluate the performance of a machine learning model and optimize it
Solve interesting real-world problems using machine learning and Python as the journey unfolds
Who this book is for:
This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed.
Key Features:Learn the fundamentals of machine learning and build your own intelligent applications
Master the art of building your own machine learning systems with this example-based practical guide
Work with important classification and regression algorithms and other machine learning techniques
Book Description:
Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.
This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.
Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
What You Will Learn:Exploit the power of Python to handle data extraction, manipulation, and exploration techniques
Use Python to visualize data spread across multiple dimensions and extract useful features
Dive deep into the world of analytics to predict situations correctly
Implement machine learning classification and regression algorithms from scratch in Python
Be amazed to see the algorithms in action
Evaluate the performance of a machine learning model and optimize it
Solve interesting real-world problems using machine learning and Python as the journey unfolds
Who this book is for:
This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed.
Take tiny steps to enter the big world of data science through this interesting guide
Key Features:Learn the fundamentals of machine learning and build your own intelligent applications
Master the art of building your own machine learning systems with this example-based practical guide
Work with important classification and regression algorithms and other machine learning techniques
Book Description:
Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.
This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.
Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
What You Will Learn:Exploit the power of Python to handle data extraction, manipulation, and exploration techniques
Use Python to visualize data spread across multiple dimensions and extract useful features
Dive deep into the world of analytics to predict situations correctly
Implement machine learning classification and regression algorithms from scratch in Python
Be amazed to see the algorithms in action
Evaluate the performance of a machine learning model and optimize it
Solve interesting real-world problems using machine learning and Python as the journey unfolds
Who this book is for:
This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed.
Key Features:Learn the fundamentals of machine learning and build your own intelligent applications
Master the art of building your own machine learning systems with this example-based practical guide
Work with important classification and regression algorithms and other machine learning techniques
Book Description:
Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning.
This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms - they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques.
Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
What You Will Learn:Exploit the power of Python to handle data extraction, manipulation, and exploration techniques
Use Python to visualize data spread across multiple dimensions and extract useful features
Dive deep into the world of analytics to predict situations correctly
Implement machine learning classification and regression algorithms from scratch in Python
Be amazed to see the algorithms in action
Evaluate the performance of a machine learning model and optimize it
Solve interesting real-world problems using machine learning and Python as the journey unfolds
Who this book is for:
This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed.
Über den Autor
Yuxi (Hayden) Liu was a Machine Learning Software Engineer at Google. With a wealth of experience from his tenure as a machine learning scientist, he has applied his expertise across data-driven domains and applied his ML expertise in computational advertising, cybersecurity, and information retrieval. He is the author of a series of influential machine learning books and an education enthusiast. His debut book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon and has been translated into many different languages.
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781783553112 |
ISBN-10: | 1783553111 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Liu, Yuxi (Hayden) |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 14 mm |
Von/Mit: | Yuxi Liu |
Erscheinungsdatum: | 31.05.2017 |
Gewicht: | 0,482 kg |
Über den Autor
Yuxi (Hayden) Liu was a Machine Learning Software Engineer at Google. With a wealth of experience from his tenure as a machine learning scientist, he has applied his expertise across data-driven domains and applied his ML expertise in computational advertising, cybersecurity, and information retrieval. He is the author of a series of influential machine learning books and an education enthusiast. His debut book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon and has been translated into many different languages.
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781783553112 |
ISBN-10: | 1783553111 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Liu, Yuxi (Hayden) |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 14 mm |
Von/Mit: | Yuxi Liu |
Erscheinungsdatum: | 31.05.2017 |
Gewicht: | 0,482 kg |
Warnhinweis