Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
105,95 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to ¿11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and ¿11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to ¿11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and ¿11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Über den Autor
Helmut Schwichtenberg is an Emeritus Professor of Mathematics at Ludwig-Maximilians-Universität München. He has recently developed the 'proof-assistant' MINLOG, a computer-implemented logic system for proof/program development and extraction of computational content.
Inhaltsverzeichnis
Preface; Preliminaries; Part I. Basic Proof Theory and Computability: 1. Logic; 2. Recursion theory; 3. Godel's theorems; Part II. Provable Recursion in Classical Systems: 4. The provably recursive functions of arithmetic; 5. Accessible recursive functions, ID<¿ and ¿11-CA0; Part III. Constructive Logic and Complexity: 6. Computability in higher types; 7. Extracting computational content from proofs; 8. Linear two-sorted arithmetic; Bibliography; Index.
Details
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Grundlagen |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
ISBN-13: | 9780521517690 |
ISBN-10: | 0521517699 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Schwichtenberg, Helmut
Wainer, Stanley S. |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 240 x 161 x 33 mm |
Von/Mit: | Helmut Schwichtenberg (u. a.) |
Erscheinungsdatum: | 28.03.2013 |
Gewicht: | 0,969 kg |