54,95 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. Yoüll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, yoüll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.
Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.
What You Will Learn
Understand full-stack deep learning using TensorFlow 2.0
Gain an understanding of the mathematical foundations of deep learning
Deploy complex deep learning solutions in production using TensorFlow 2.0
Understand generative adversarial networks, graph attention networks, and GraphSAGE
Who This Book Is For:
Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.
Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. Yoüll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, yoüll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.
Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.
What You Will Learn
Understand full-stack deep learning using TensorFlow 2.0
Gain an understanding of the mathematical foundations of deep learning
Deploy complex deep learning solutions in production using TensorFlow 2.0
Understand generative adversarial networks, graph attention networks, and GraphSAGE
Who This Book Is For:
Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.
Teaches how to deploy deep learning applications using TensorFlow 2.0 in a relatively short period of time
Explains different deep learning methods for supervised and unsupervised machine learning
Covers advanced deep learning techniques such as Generative Adversarial Networks and Graph neural Networks
Chapter 1: Mathematical Foundations.- Chapter 2: Introduction to Deep learning Concepts and Tensorflow 2.0.- Chapter 3: Convolutional Neural networks.- Chapter 4: Natural Language Processing.- Chapter 5: Unsupervised Learning with Restricted Boltzmann Machines and Auto-encoders.- Chapter 6: Advanced Neural Networks.
| Erscheinungsjahr: | 2023 |
|---|---|
| Genre: | Importe, Informatik |
| Rubrik: | Naturwissenschaften & Technik |
| Medium: | Taschenbuch |
| Inhalt: |
xx
652 S. 213 s/w Illustr. 652 p. 213 illus. |
| ISBN-13: | 9781484289303 |
| ISBN-10: | 1484289307 |
| Sprache: | Englisch |
| Einband: | Kartoniert / Broschiert |
| Autor: | Pattanayak, Santanu |
| Auflage: | Second Edition |
| Hersteller: |
Apress
Apress L.P. |
| Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
| Maße: | 254 x 178 x 36 mm |
| Von/Mit: | Santanu Pattanayak |
| Erscheinungsdatum: | 01.01.2023 |
| Gewicht: | 1,243 kg |