Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Principles of Superconducting Quantum Computers
Buch von Daniel D Stancil (u. a.)
Sprache: Englisch

108,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers

In Principles of Superconducting Quantum Computers, a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction.

Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques.

The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes:
* A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates
* Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations
* Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits
* In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and more

Ideal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.
Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers

In Principles of Superconducting Quantum Computers, a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction.

Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques.

The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes:
* A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates
* Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations
* Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits
* In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and more

Ideal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.
Über den Autor

Daniel D. Stancil, PhD, is the Alcoa Distinguished Professor and Head of Electrical and Computer Engineering at North Carolina State University. In addition to quantum computing, his research interests include spin waves, and microwave and optical devices and systems.

Gregory T. Byrd, PhD, is Professor and Associate Head of Electrical and Computer Engineering at North Carolina State University. His research focuses on both classical and quantum computer architecture and systems.

Inhaltsverzeichnis

List of Figures xiii

List of Tables xxv

Preface xxvii

Acknowledgments xxix

About the Companion Website xxxi

1 Qubits, Gates, and Circuits 1

1.1 Bits and Qubits 1

1.1.1 Circuits in Space vs. Circuits in Time 1

1.1.2 Superposition 1

1.1.3 No Cloning 3

1.1.4 Reversibility 3

1.1.5 Entanglement 3

1.2 Single-Qubit States 4

1.3 Measurement and the Born Rule 5

1.4 Unitary Operations and Single-Qubit Gates 6

1.5 Two-Qubit Gates 8

1.5.1 Two-Qubit States 8

1.5.2 Matrix Representation of Two-Qubit Gates 9

1.5.3 Controlled-NOT 11

1.6 Bell State 12

1.7 No Cloning, Revisited 13

1.8 Example: Deutsch's Problem 15

1.9 Key Characteristics of Quantum Computing 18

1.10 Quantum Computing Systems 18

1.11 Exercises 22

2 Physics of Single Qubit Gates 25

2.1 Requirements for a Quantum Computer 25

2.2 Single Qubit Gates 25

2.2.1 Rotations 25

2.2.2 Two State Systems 33

2.2.3 Creating Rotations: Rabi Oscillations 38

2.3 Quantum State Tomography 42

2.4 Expectation Values and the Pauli Operators 44

2.5 Density Matrix 45

2.6 Exercises 48

3 Physics of Two Qubit Gates 51

3.1 ¿iSWAP Gate 51

3.2 Coupled Tunable Qubits 53

3.3 Cross Resonance Scheme 55

3.4 Other Controlled Gates 57

3.5 Two-Qubit States and the Density Matrix 59

3.6 Exercises 62

4 Superconducting Quantum Computer Systems 63

4.1 Transmission Lines 63

4.1.1 General Transmission Line Equations 63

4.1.2 Lossless Transmission Lines 65

4.1.3 Transmission Lines with Loss 67

4.2 Terminated Lossless Line 71

4.2.1 Reflection Coefficient 71

4.2.2 Power (Flow of Energy) and Return Loss 72

4.2.3 Standing Wave Ratio (SWR) 73

4.2.4 Impedance as a Function of Position 74

4.2.5 Quarter Wave Transformer 76

4.2.6 Coaxial, Microstrip, and Coplanar Lines 77

4.3 S Parameters 80

4.3.1 Lossless Condition 81

4.3.2 Reciprocity 81

4.4 Transmission (ABCD) Matrices 81

4.5 Attenuators 85

4.6 Circulators and Isolators 87

4.7 Power Dividers/Combiners 89

4.8 Mixers 92

4.9 Low-Pass Filters 95

4.10 Noise 97

4.10.1 Thermal Noise 97

4.10.2 Equivalent Noise Temperature 99

4.10.3 Noise Factor and Noise Figure 100

4.10.4 Attenuators and Noise 101

4.10.5 Noise in Cascaded Systems 103

4.11 Low Noise Amplifiers 104

4.12 Exercises 105

5 Resonators: Classical Treatment 107

5.1 Parallel Lumped Element Resonator 107

5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator 109

5.3 Transmission Line Resonator 111

5.4 Capacitive Coupling to a Transmission Line Resonator 113

5.5 Capacitively-Coupled Lossless Resonators 117

5.6 Classical Model of Qubit Readout 120

5.7 Exercises 124

6 Resonators: Quantum Treatment 127

6.1 Lagrangian Mechanics 127

6.1.1 Hamilton's Principle 127

6.1.2 Calculus of Variations 128

6.1.3 Lagrangian Equation of Motion 129

6.2 Hamiltonian Mechanics 130

6.3 Harmonic Oscillators 131

6.3.1 Classical Harmonic Oscillator 131

6.3.2 Quantum Mechanical Harmonic Oscillator 133

6.3.3 Raising and Lowering Operators 135

6.3.4 Can a Harmonic Oscillator Be Used as a Qubit? 137

6.4 Circuit Quantum Electrodynamics 138

6.4.1 Classical LC Resonant Circuit 138

6.4.2 Quantization of the LC Circuit 139

6.4.3 Circuit Electrodynamic Approach for General Circuits 140

6.4.4 Circuit Model for Transmission Line Resonator 141

6.4.5 Quantizing a Transmission Line Resonator 144

6.4.6 Quantized Coupled LC Resonant Circuits 144

6.4.7 Schrödinger, Heisenberg, and Interaction Pictures 147

6.4.8 Resonant Circuits and Qubits 150

6.4.9 The Dispersive Regime 153

6.5 Exercises 156

7 Theory of Superconductivity 159

7.1 Bosons and Fermions 159

7.2 Bloch Theorem 161

7.3 Free Electron Model for Metals 163

7.3.1 Discrete States in Finite Samples 163

7.3.2 Phonons 166

7.3.3 Debye Model 167

7.3.4 Electron-Phonon Scattering and Electrical Conductivity 168

7.3.5 Perfect Conductor vs. Superconductor 170

7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity 172

7.4.1 Cooper Pair Model 172

7.4.2 Dielectric Function 175

7.4.3 Jellium 176

7.4.4 Scattering Amplitude and Attractive Electron-Electron Interaction 179

7.4.5 Interpretation of Attractive Interaction 180

7.4.6 Superconductor Hamiltonian 181

7.4.7 Superconducting Ground State 182

7.5 Electrodynamics of Superconductors 185

7.5.1 Cooper Pairs and the Macroscopic Wave Function 185

7.5.2 Potential Functions 186

7.5.3 London Equations 187

7.5.4 London Gauge 189

7.5.5 Penetration Depth 190

7.5.6 Flux Quantization 191

7.6 Chapter Summary 192

7.7 Exercises 193

8 Josephson Junctions 195

8.1 Tunneling 195

8.1.1 Reflection from a Barrier 196

8.1.2 Finite Thickness Barrier 198

8.2 Josephson Junctions 200

8.2.1 Current and Voltage Relations 200

8.2.2 Josephson Junction Hamiltonian 203

8.2.3 Quantized Josephson Junction Analysis 205

8.3 Superconducting Quantum Interference Devices (SQUIDs) 207

8.4 Josephson Junction Parametric Amplifiers 208

8.5 Exercises 209

9 Errors and Error Mitigation 211

9.1 NISQ Processors 211

9.2 Decoherence 212

9.3 State Preparation and Measurement Errors 214

9.4 Characterizing Gate Errors 215

9.5 State Leakage and Suppression Using Pulse Shaping 219

9.6 Zero-Noise Extrapolation 220

9.7 Optimized Control Using Deep Learning 223

9.8 Exercises 225

10 Quantum Error Correction 227

10.1 Review of Classical Error Correction 227

10.1.1 Error Detection 228

10.1.2 Error Correction: Repetition Code 228

10.1.3 Hamming Code 229

10.2 Quantum Errors 230

10.3 Detecting and Correcting Quantum Errors 232

10.3.1 Bit Flip 232

10.3.2 Phase Flip 234

10.3.3 Correcting Bit and Phase Flips: Shor's 9-Qubit Code 235

10.3.4 Arbitrary Rotations 236

10.4 Stabilizer Codes 238

10.4.1 Stabilizers 238

10.4.2 Stabilizers for Error Correction 239

10.5 Operating on Logical Qubits 242

10.6 Error Thresholds 243

10.6.1 Concatenation of Error Codes 243

10.6.2 Threshold Theorem 244

10.7 Surface Codes 245

10.7.1 Stabilizers 246

10.7.2 Error Detection and Correction 247

10.7.3 Logical X and Z Operators 250

10.7.4 Multiple Qubits: Lattice Surgery 253

10.7.5 CNOT 257

10.7.6 Single-Qubit Gates 258

10.8 Summary and Further Reading 259

10.9 Exercises 261

11 Quantum Logic: Efficient Implementation of Classical Computations 263

11.1 Reversible Logic 264

11.1.1 Reversible Logic Gates 264

11.1.2 Reversible Logic Circuits 266

11.2 Quantum Logic Circuits 268

11.2.1 Entanglement and Uncomputing 269

11.2.2 Multi-Qubit Gates 270

11.2.3 Qubit Topology 270

11.3 Efficient Arithmetic Circuits: Adder 272

11.3.1 Quantum Ripple-Carry Adder 273

11.3.2 In-Place Ripple-Carry Adder 275

11.3.3 Carry-Lookahead Adder 277

11.3.4 Adder Comparison 281

11.4 Phase Logic 283

11.4.1 Controlled-Z and Controlled-Phase Gates 283

11.4.2 Selective Phase Change 285

11.4.3 Phase Logic Gates 287

11.5 Summary and Further Reading 288

11.6 Exercises 289

12 Some Quantum Algorithms 291

12.1 Computational Complexity 291

12.1.1 Quantum Program Run-Time 292

12.1.2 Classical Complexity Classes 292

12.1.3 Quantum Complexity 293

12.2 Grover's Search Algorithm 294

12.2.1 Grover Iteration 294

12.2.2 Quantum Implementation 296

12.2.3 Generalizations 299

12.3 Quantum Fourier Transform 299

12.3.1 Discrete Fourier Transform 300

12.3.2 Inverse Discrete Fourier Transform 300

12.3.3 Quantum Implementation of the DFT 301

12.3.4 Encoding Quantum States 302

12.3.5 Quantum Implementation 304

12.3.6 Computational Complexity 306

12.4 Quantum Phase Estimation 307

12.4.1 Quantum Implementation 307

12.4.2 Computational Complexity and Other Issues 308

12.5 Shor's Algorithm 309

12.5.1 Hybrid Classical-Quantum Algorithm 309

12.5.2 Finding the Period 310

12.5.3 Computational Complexity 314

12.6 Variational Quantum Algorithms 314

12.6.1 Variational Quantum Eigensolver 316

12.6.2 Quantum Approximate Optimization Algorithm 320

12.6.3 Challenges and Opportunities 323

12.7 Summary and Further Reading 324

12.8 Exercises 325

Bibliography 327

Index 339

Details
Erscheinungsjahr: 2022
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 384 S.
ISBN-13: 9781119750727
ISBN-10: 1119750725
Sprache: Englisch
Einband: Gebunden
Autor: Stancil, Daniel D
Byrd, Gregory T
Hersteller: Wiley
Maße: 260 x 183 x 25 mm
Von/Mit: Daniel D Stancil (u. a.)
Erscheinungsdatum: 05.04.2022
Gewicht: 0,91 kg
Artikel-ID: 120545643
Über den Autor

Daniel D. Stancil, PhD, is the Alcoa Distinguished Professor and Head of Electrical and Computer Engineering at North Carolina State University. In addition to quantum computing, his research interests include spin waves, and microwave and optical devices and systems.

Gregory T. Byrd, PhD, is Professor and Associate Head of Electrical and Computer Engineering at North Carolina State University. His research focuses on both classical and quantum computer architecture and systems.

Inhaltsverzeichnis

List of Figures xiii

List of Tables xxv

Preface xxvii

Acknowledgments xxix

About the Companion Website xxxi

1 Qubits, Gates, and Circuits 1

1.1 Bits and Qubits 1

1.1.1 Circuits in Space vs. Circuits in Time 1

1.1.2 Superposition 1

1.1.3 No Cloning 3

1.1.4 Reversibility 3

1.1.5 Entanglement 3

1.2 Single-Qubit States 4

1.3 Measurement and the Born Rule 5

1.4 Unitary Operations and Single-Qubit Gates 6

1.5 Two-Qubit Gates 8

1.5.1 Two-Qubit States 8

1.5.2 Matrix Representation of Two-Qubit Gates 9

1.5.3 Controlled-NOT 11

1.6 Bell State 12

1.7 No Cloning, Revisited 13

1.8 Example: Deutsch's Problem 15

1.9 Key Characteristics of Quantum Computing 18

1.10 Quantum Computing Systems 18

1.11 Exercises 22

2 Physics of Single Qubit Gates 25

2.1 Requirements for a Quantum Computer 25

2.2 Single Qubit Gates 25

2.2.1 Rotations 25

2.2.2 Two State Systems 33

2.2.3 Creating Rotations: Rabi Oscillations 38

2.3 Quantum State Tomography 42

2.4 Expectation Values and the Pauli Operators 44

2.5 Density Matrix 45

2.6 Exercises 48

3 Physics of Two Qubit Gates 51

3.1 ¿iSWAP Gate 51

3.2 Coupled Tunable Qubits 53

3.3 Cross Resonance Scheme 55

3.4 Other Controlled Gates 57

3.5 Two-Qubit States and the Density Matrix 59

3.6 Exercises 62

4 Superconducting Quantum Computer Systems 63

4.1 Transmission Lines 63

4.1.1 General Transmission Line Equations 63

4.1.2 Lossless Transmission Lines 65

4.1.3 Transmission Lines with Loss 67

4.2 Terminated Lossless Line 71

4.2.1 Reflection Coefficient 71

4.2.2 Power (Flow of Energy) and Return Loss 72

4.2.3 Standing Wave Ratio (SWR) 73

4.2.4 Impedance as a Function of Position 74

4.2.5 Quarter Wave Transformer 76

4.2.6 Coaxial, Microstrip, and Coplanar Lines 77

4.3 S Parameters 80

4.3.1 Lossless Condition 81

4.3.2 Reciprocity 81

4.4 Transmission (ABCD) Matrices 81

4.5 Attenuators 85

4.6 Circulators and Isolators 87

4.7 Power Dividers/Combiners 89

4.8 Mixers 92

4.9 Low-Pass Filters 95

4.10 Noise 97

4.10.1 Thermal Noise 97

4.10.2 Equivalent Noise Temperature 99

4.10.3 Noise Factor and Noise Figure 100

4.10.4 Attenuators and Noise 101

4.10.5 Noise in Cascaded Systems 103

4.11 Low Noise Amplifiers 104

4.12 Exercises 105

5 Resonators: Classical Treatment 107

5.1 Parallel Lumped Element Resonator 107

5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator 109

5.3 Transmission Line Resonator 111

5.4 Capacitive Coupling to a Transmission Line Resonator 113

5.5 Capacitively-Coupled Lossless Resonators 117

5.6 Classical Model of Qubit Readout 120

5.7 Exercises 124

6 Resonators: Quantum Treatment 127

6.1 Lagrangian Mechanics 127

6.1.1 Hamilton's Principle 127

6.1.2 Calculus of Variations 128

6.1.3 Lagrangian Equation of Motion 129

6.2 Hamiltonian Mechanics 130

6.3 Harmonic Oscillators 131

6.3.1 Classical Harmonic Oscillator 131

6.3.2 Quantum Mechanical Harmonic Oscillator 133

6.3.3 Raising and Lowering Operators 135

6.3.4 Can a Harmonic Oscillator Be Used as a Qubit? 137

6.4 Circuit Quantum Electrodynamics 138

6.4.1 Classical LC Resonant Circuit 138

6.4.2 Quantization of the LC Circuit 139

6.4.3 Circuit Electrodynamic Approach for General Circuits 140

6.4.4 Circuit Model for Transmission Line Resonator 141

6.4.5 Quantizing a Transmission Line Resonator 144

6.4.6 Quantized Coupled LC Resonant Circuits 144

6.4.7 Schrödinger, Heisenberg, and Interaction Pictures 147

6.4.8 Resonant Circuits and Qubits 150

6.4.9 The Dispersive Regime 153

6.5 Exercises 156

7 Theory of Superconductivity 159

7.1 Bosons and Fermions 159

7.2 Bloch Theorem 161

7.3 Free Electron Model for Metals 163

7.3.1 Discrete States in Finite Samples 163

7.3.2 Phonons 166

7.3.3 Debye Model 167

7.3.4 Electron-Phonon Scattering and Electrical Conductivity 168

7.3.5 Perfect Conductor vs. Superconductor 170

7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity 172

7.4.1 Cooper Pair Model 172

7.4.2 Dielectric Function 175

7.4.3 Jellium 176

7.4.4 Scattering Amplitude and Attractive Electron-Electron Interaction 179

7.4.5 Interpretation of Attractive Interaction 180

7.4.6 Superconductor Hamiltonian 181

7.4.7 Superconducting Ground State 182

7.5 Electrodynamics of Superconductors 185

7.5.1 Cooper Pairs and the Macroscopic Wave Function 185

7.5.2 Potential Functions 186

7.5.3 London Equations 187

7.5.4 London Gauge 189

7.5.5 Penetration Depth 190

7.5.6 Flux Quantization 191

7.6 Chapter Summary 192

7.7 Exercises 193

8 Josephson Junctions 195

8.1 Tunneling 195

8.1.1 Reflection from a Barrier 196

8.1.2 Finite Thickness Barrier 198

8.2 Josephson Junctions 200

8.2.1 Current and Voltage Relations 200

8.2.2 Josephson Junction Hamiltonian 203

8.2.3 Quantized Josephson Junction Analysis 205

8.3 Superconducting Quantum Interference Devices (SQUIDs) 207

8.4 Josephson Junction Parametric Amplifiers 208

8.5 Exercises 209

9 Errors and Error Mitigation 211

9.1 NISQ Processors 211

9.2 Decoherence 212

9.3 State Preparation and Measurement Errors 214

9.4 Characterizing Gate Errors 215

9.5 State Leakage and Suppression Using Pulse Shaping 219

9.6 Zero-Noise Extrapolation 220

9.7 Optimized Control Using Deep Learning 223

9.8 Exercises 225

10 Quantum Error Correction 227

10.1 Review of Classical Error Correction 227

10.1.1 Error Detection 228

10.1.2 Error Correction: Repetition Code 228

10.1.3 Hamming Code 229

10.2 Quantum Errors 230

10.3 Detecting and Correcting Quantum Errors 232

10.3.1 Bit Flip 232

10.3.2 Phase Flip 234

10.3.3 Correcting Bit and Phase Flips: Shor's 9-Qubit Code 235

10.3.4 Arbitrary Rotations 236

10.4 Stabilizer Codes 238

10.4.1 Stabilizers 238

10.4.2 Stabilizers for Error Correction 239

10.5 Operating on Logical Qubits 242

10.6 Error Thresholds 243

10.6.1 Concatenation of Error Codes 243

10.6.2 Threshold Theorem 244

10.7 Surface Codes 245

10.7.1 Stabilizers 246

10.7.2 Error Detection and Correction 247

10.7.3 Logical X and Z Operators 250

10.7.4 Multiple Qubits: Lattice Surgery 253

10.7.5 CNOT 257

10.7.6 Single-Qubit Gates 258

10.8 Summary and Further Reading 259

10.9 Exercises 261

11 Quantum Logic: Efficient Implementation of Classical Computations 263

11.1 Reversible Logic 264

11.1.1 Reversible Logic Gates 264

11.1.2 Reversible Logic Circuits 266

11.2 Quantum Logic Circuits 268

11.2.1 Entanglement and Uncomputing 269

11.2.2 Multi-Qubit Gates 270

11.2.3 Qubit Topology 270

11.3 Efficient Arithmetic Circuits: Adder 272

11.3.1 Quantum Ripple-Carry Adder 273

11.3.2 In-Place Ripple-Carry Adder 275

11.3.3 Carry-Lookahead Adder 277

11.3.4 Adder Comparison 281

11.4 Phase Logic 283

11.4.1 Controlled-Z and Controlled-Phase Gates 283

11.4.2 Selective Phase Change 285

11.4.3 Phase Logic Gates 287

11.5 Summary and Further Reading 288

11.6 Exercises 289

12 Some Quantum Algorithms 291

12.1 Computational Complexity 291

12.1.1 Quantum Program Run-Time 292

12.1.2 Classical Complexity Classes 292

12.1.3 Quantum Complexity 293

12.2 Grover's Search Algorithm 294

12.2.1 Grover Iteration 294

12.2.2 Quantum Implementation 296

12.2.3 Generalizations 299

12.3 Quantum Fourier Transform 299

12.3.1 Discrete Fourier Transform 300

12.3.2 Inverse Discrete Fourier Transform 300

12.3.3 Quantum Implementation of the DFT 301

12.3.4 Encoding Quantum States 302

12.3.5 Quantum Implementation 304

12.3.6 Computational Complexity 306

12.4 Quantum Phase Estimation 307

12.4.1 Quantum Implementation 307

12.4.2 Computational Complexity and Other Issues 308

12.5 Shor's Algorithm 309

12.5.1 Hybrid Classical-Quantum Algorithm 309

12.5.2 Finding the Period 310

12.5.3 Computational Complexity 314

12.6 Variational Quantum Algorithms 314

12.6.1 Variational Quantum Eigensolver 316

12.6.2 Quantum Approximate Optimization Algorithm 320

12.6.3 Challenges and Opportunities 323

12.7 Summary and Further Reading 324

12.8 Exercises 325

Bibliography 327

Index 339

Details
Erscheinungsjahr: 2022
Fachbereich: Nachrichtentechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 384 S.
ISBN-13: 9781119750727
ISBN-10: 1119750725
Sprache: Englisch
Einband: Gebunden
Autor: Stancil, Daniel D
Byrd, Gregory T
Hersteller: Wiley
Maße: 260 x 183 x 25 mm
Von/Mit: Daniel D Stancil (u. a.)
Erscheinungsdatum: 05.04.2022
Gewicht: 0,91 kg
Artikel-ID: 120545643
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte