Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
145,00 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
A thoroughly revised new edition of the definitive work on power systems best practices
In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago.
With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include:
* State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics
* Chapters on generation with limited energy supply, power flow control, power system security, and more
* An introduction to regulatory issues, renewable energy, and other evolving topics
* New worked examples and end-of-chapter problems
* A companion website with additional materials, including MATLAB programs and power system sample data sets
In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago.
With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include:
* State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics
* Chapters on generation with limited energy supply, power flow control, power system security, and more
* An introduction to regulatory issues, renewable energy, and other evolving topics
* New worked examples and end-of-chapter problems
* A companion website with additional materials, including MATLAB programs and power system sample data sets
A thoroughly revised new edition of the definitive work on power systems best practices
In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago.
With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include:
* State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics
* Chapters on generation with limited energy supply, power flow control, power system security, and more
* An introduction to regulatory issues, renewable energy, and other evolving topics
* New worked examples and end-of-chapter problems
* A companion website with additional materials, including MATLAB programs and power system sample data sets
In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago.
With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include:
* State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics
* Chapters on generation with limited energy supply, power flow control, power system security, and more
* An introduction to regulatory issues, renewable energy, and other evolving topics
* New worked examples and end-of-chapter problems
* A companion website with additional materials, including MATLAB programs and power system sample data sets
Inhaltsverzeichnis
Preface to the Third Edition xvii
Preface to the Second Edition xix
Preface to the First Edition xxi
Acknowledgment xxiii
1 Introduction 1
1.1 Purpose of the Course / 1
1.2 Course Scope / 2
1.3 Economic Importance / 2
1.4 Deregulation: Vertical to Horizontal / 3
1.5 Problems: New and Old / 3
1.6 Characteristics of Steam Units / 6
1.7 Renewable Energy / 22
APPENDIX 1A Typical Generation Data / 26
APPENDIX 1B Fossil Fuel Prices / 28
APPENDIX 1C Unit Statistics / 29
References for Generation Systems / 31
Further Reading / 31
2 Industrial Organization, Managerial Economics, and Finance 35
2.1 Introduction / 35
2.2 Business Environments / 36
2.3 Theory of the Firm / 40
2.4 Competitive Market Solutions / 42
2.5 Supplier Solutions / 45
2.6 Cost of Electric Energy Production / 53
2.7 Evolving Markets / 54
2.8 Multiple Company Environments / 58
2.9 Uncertainty and Reliability / 61
PROBLEMS / 61
Reference / 62
3 Economic Dispatch of Thermal Units and Methods of Solution 63
3.1 The Economic Dispatch Problem / 63
3.2 Economic Dispatch with Piecewise Linear Cost Functions / 68
3.3 LP Method / 69
3.4 The Lambda Iteration Method / 73
3.5 Economic Dispatch Via Binary Search / 76
3.6 Economic Dispatch Using Dynamic Programming / 78
3.7 Composite Generation Production Cost Function / 81
3.8 Base Point and Participation Factors / 85
3.9 Thermal System Dispatching with Network Losses Considered / 88
3.10 The Concept of Locational Marginal Price (LMP) / 92
3.11 Auction Mechanisms / 95
APPENDIX 3A Optimization Within Constraints / 106
APPENDIX 3B Linear Programming (LP) / 117
APPENDIX 3C Non-Linear Programming / 128
APPENDIX 3D Dynamic Programming (DP) / 128
APPENDIX 3E Convex Optimization / 135
PROBLEMS / 138
References / 146
4 Unit Commitment 147
4.1 Introduction / 147
4.2 Unit Commitment Solution Methods / 155
4.3 Security-Constrained Unit Commitment (SCUC) / 167
4.4 Daily Auctions Using a Unit Commitment / 167
APPENDIX 4A Dual Optimization on a Nonconvex Problem / 167
APPENDIX 4B Dynamic-Programming Solution to Unit Commitment / 173
4B.1 Introduction / 173
4B.2 Forward DP Approach / 174
PROBLEMS / 182
5 Generation with Limited Energy Supply 187
5.1 Introduction / 187
5.2 Fuel Scheduling / 188
5.3 Take-or-Pay Fuel Supply Contract / 188
5.4 Complex Take-or-Pay Fuel Supply Models / 194
5.5 Fuel Scheduling by Linear Programming / 195
5.6 Introduction to Hydrothermal Coordination / 202
5.7 Hydroelectric Plant Models / 204
5.8 Scheduling Problems / 207
5.9 The Hydrothermal Scheduling Problem / 211
5.10 Hydro-Scheduling using Linear Programming / 222
APPENDIX 5A Dynamic-Programming Solution to hydrothermal Scheduling / 225
5.A.1 Dynamic Programming Example / 227
PROBLEMS / 234
6 Transmission System Effects 243
6.1 Introduction / 243
6.2 Conversion of Equipment Data to Bus and Branch Data / 247
6.3 Substation Bus Processing / 248
6.4 Equipment Modeling / 248
6.5 Dispatcher Power Flow for Operational Planning / 251
6.6 Conservation of Energy (Tellegen's T
Preface to the Second Edition xix
Preface to the First Edition xxi
Acknowledgment xxiii
1 Introduction 1
1.1 Purpose of the Course / 1
1.2 Course Scope / 2
1.3 Economic Importance / 2
1.4 Deregulation: Vertical to Horizontal / 3
1.5 Problems: New and Old / 3
1.6 Characteristics of Steam Units / 6
1.7 Renewable Energy / 22
APPENDIX 1A Typical Generation Data / 26
APPENDIX 1B Fossil Fuel Prices / 28
APPENDIX 1C Unit Statistics / 29
References for Generation Systems / 31
Further Reading / 31
2 Industrial Organization, Managerial Economics, and Finance 35
2.1 Introduction / 35
2.2 Business Environments / 36
2.3 Theory of the Firm / 40
2.4 Competitive Market Solutions / 42
2.5 Supplier Solutions / 45
2.6 Cost of Electric Energy Production / 53
2.7 Evolving Markets / 54
2.8 Multiple Company Environments / 58
2.9 Uncertainty and Reliability / 61
PROBLEMS / 61
Reference / 62
3 Economic Dispatch of Thermal Units and Methods of Solution 63
3.1 The Economic Dispatch Problem / 63
3.2 Economic Dispatch with Piecewise Linear Cost Functions / 68
3.3 LP Method / 69
3.4 The Lambda Iteration Method / 73
3.5 Economic Dispatch Via Binary Search / 76
3.6 Economic Dispatch Using Dynamic Programming / 78
3.7 Composite Generation Production Cost Function / 81
3.8 Base Point and Participation Factors / 85
3.9 Thermal System Dispatching with Network Losses Considered / 88
3.10 The Concept of Locational Marginal Price (LMP) / 92
3.11 Auction Mechanisms / 95
APPENDIX 3A Optimization Within Constraints / 106
APPENDIX 3B Linear Programming (LP) / 117
APPENDIX 3C Non-Linear Programming / 128
APPENDIX 3D Dynamic Programming (DP) / 128
APPENDIX 3E Convex Optimization / 135
PROBLEMS / 138
References / 146
4 Unit Commitment 147
4.1 Introduction / 147
4.2 Unit Commitment Solution Methods / 155
4.3 Security-Constrained Unit Commitment (SCUC) / 167
4.4 Daily Auctions Using a Unit Commitment / 167
APPENDIX 4A Dual Optimization on a Nonconvex Problem / 167
APPENDIX 4B Dynamic-Programming Solution to Unit Commitment / 173
4B.1 Introduction / 173
4B.2 Forward DP Approach / 174
PROBLEMS / 182
5 Generation with Limited Energy Supply 187
5.1 Introduction / 187
5.2 Fuel Scheduling / 188
5.3 Take-or-Pay Fuel Supply Contract / 188
5.4 Complex Take-or-Pay Fuel Supply Models / 194
5.5 Fuel Scheduling by Linear Programming / 195
5.6 Introduction to Hydrothermal Coordination / 202
5.7 Hydroelectric Plant Models / 204
5.8 Scheduling Problems / 207
5.9 The Hydrothermal Scheduling Problem / 211
5.10 Hydro-Scheduling using Linear Programming / 222
APPENDIX 5A Dynamic-Programming Solution to hydrothermal Scheduling / 225
5.A.1 Dynamic Programming Example / 227
PROBLEMS / 234
6 Transmission System Effects 243
6.1 Introduction / 243
6.2 Conversion of Equipment Data to Bus and Branch Data / 247
6.3 Substation Bus Processing / 248
6.4 Equipment Modeling / 248
6.5 Dispatcher Power Flow for Operational Planning / 251
6.6 Conservation of Energy (Tellegen's T
Details
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Kraftwerktechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 656 S. |
ISBN-13: | 9780471790556 |
ISBN-10: | 0471790559 |
Sprache: | Englisch |
Herstellernummer: | 14679055000 |
Autor: |
Wood, Allen J.
Wollenberg, Bruce F. Sheblé, Gerald B. |
Auflage: | 3. Aufl. |
Hersteller: |
Wiley & Sons
Wiley-Interscience |
Maße: | 243 x 155 x 35 mm |
Von/Mit: | Allen J. Wood (u. a.) |
Erscheinungsdatum: | 24.12.2013 |
Gewicht: | 1,006 kg |
Inhaltsverzeichnis
Preface to the Third Edition xvii
Preface to the Second Edition xix
Preface to the First Edition xxi
Acknowledgment xxiii
1 Introduction 1
1.1 Purpose of the Course / 1
1.2 Course Scope / 2
1.3 Economic Importance / 2
1.4 Deregulation: Vertical to Horizontal / 3
1.5 Problems: New and Old / 3
1.6 Characteristics of Steam Units / 6
1.7 Renewable Energy / 22
APPENDIX 1A Typical Generation Data / 26
APPENDIX 1B Fossil Fuel Prices / 28
APPENDIX 1C Unit Statistics / 29
References for Generation Systems / 31
Further Reading / 31
2 Industrial Organization, Managerial Economics, and Finance 35
2.1 Introduction / 35
2.2 Business Environments / 36
2.3 Theory of the Firm / 40
2.4 Competitive Market Solutions / 42
2.5 Supplier Solutions / 45
2.6 Cost of Electric Energy Production / 53
2.7 Evolving Markets / 54
2.8 Multiple Company Environments / 58
2.9 Uncertainty and Reliability / 61
PROBLEMS / 61
Reference / 62
3 Economic Dispatch of Thermal Units and Methods of Solution 63
3.1 The Economic Dispatch Problem / 63
3.2 Economic Dispatch with Piecewise Linear Cost Functions / 68
3.3 LP Method / 69
3.4 The Lambda Iteration Method / 73
3.5 Economic Dispatch Via Binary Search / 76
3.6 Economic Dispatch Using Dynamic Programming / 78
3.7 Composite Generation Production Cost Function / 81
3.8 Base Point and Participation Factors / 85
3.9 Thermal System Dispatching with Network Losses Considered / 88
3.10 The Concept of Locational Marginal Price (LMP) / 92
3.11 Auction Mechanisms / 95
APPENDIX 3A Optimization Within Constraints / 106
APPENDIX 3B Linear Programming (LP) / 117
APPENDIX 3C Non-Linear Programming / 128
APPENDIX 3D Dynamic Programming (DP) / 128
APPENDIX 3E Convex Optimization / 135
PROBLEMS / 138
References / 146
4 Unit Commitment 147
4.1 Introduction / 147
4.2 Unit Commitment Solution Methods / 155
4.3 Security-Constrained Unit Commitment (SCUC) / 167
4.4 Daily Auctions Using a Unit Commitment / 167
APPENDIX 4A Dual Optimization on a Nonconvex Problem / 167
APPENDIX 4B Dynamic-Programming Solution to Unit Commitment / 173
4B.1 Introduction / 173
4B.2 Forward DP Approach / 174
PROBLEMS / 182
5 Generation with Limited Energy Supply 187
5.1 Introduction / 187
5.2 Fuel Scheduling / 188
5.3 Take-or-Pay Fuel Supply Contract / 188
5.4 Complex Take-or-Pay Fuel Supply Models / 194
5.5 Fuel Scheduling by Linear Programming / 195
5.6 Introduction to Hydrothermal Coordination / 202
5.7 Hydroelectric Plant Models / 204
5.8 Scheduling Problems / 207
5.9 The Hydrothermal Scheduling Problem / 211
5.10 Hydro-Scheduling using Linear Programming / 222
APPENDIX 5A Dynamic-Programming Solution to hydrothermal Scheduling / 225
5.A.1 Dynamic Programming Example / 227
PROBLEMS / 234
6 Transmission System Effects 243
6.1 Introduction / 243
6.2 Conversion of Equipment Data to Bus and Branch Data / 247
6.3 Substation Bus Processing / 248
6.4 Equipment Modeling / 248
6.5 Dispatcher Power Flow for Operational Planning / 251
6.6 Conservation of Energy (Tellegen's T
Preface to the Second Edition xix
Preface to the First Edition xxi
Acknowledgment xxiii
1 Introduction 1
1.1 Purpose of the Course / 1
1.2 Course Scope / 2
1.3 Economic Importance / 2
1.4 Deregulation: Vertical to Horizontal / 3
1.5 Problems: New and Old / 3
1.6 Characteristics of Steam Units / 6
1.7 Renewable Energy / 22
APPENDIX 1A Typical Generation Data / 26
APPENDIX 1B Fossil Fuel Prices / 28
APPENDIX 1C Unit Statistics / 29
References for Generation Systems / 31
Further Reading / 31
2 Industrial Organization, Managerial Economics, and Finance 35
2.1 Introduction / 35
2.2 Business Environments / 36
2.3 Theory of the Firm / 40
2.4 Competitive Market Solutions / 42
2.5 Supplier Solutions / 45
2.6 Cost of Electric Energy Production / 53
2.7 Evolving Markets / 54
2.8 Multiple Company Environments / 58
2.9 Uncertainty and Reliability / 61
PROBLEMS / 61
Reference / 62
3 Economic Dispatch of Thermal Units and Methods of Solution 63
3.1 The Economic Dispatch Problem / 63
3.2 Economic Dispatch with Piecewise Linear Cost Functions / 68
3.3 LP Method / 69
3.4 The Lambda Iteration Method / 73
3.5 Economic Dispatch Via Binary Search / 76
3.6 Economic Dispatch Using Dynamic Programming / 78
3.7 Composite Generation Production Cost Function / 81
3.8 Base Point and Participation Factors / 85
3.9 Thermal System Dispatching with Network Losses Considered / 88
3.10 The Concept of Locational Marginal Price (LMP) / 92
3.11 Auction Mechanisms / 95
APPENDIX 3A Optimization Within Constraints / 106
APPENDIX 3B Linear Programming (LP) / 117
APPENDIX 3C Non-Linear Programming / 128
APPENDIX 3D Dynamic Programming (DP) / 128
APPENDIX 3E Convex Optimization / 135
PROBLEMS / 138
References / 146
4 Unit Commitment 147
4.1 Introduction / 147
4.2 Unit Commitment Solution Methods / 155
4.3 Security-Constrained Unit Commitment (SCUC) / 167
4.4 Daily Auctions Using a Unit Commitment / 167
APPENDIX 4A Dual Optimization on a Nonconvex Problem / 167
APPENDIX 4B Dynamic-Programming Solution to Unit Commitment / 173
4B.1 Introduction / 173
4B.2 Forward DP Approach / 174
PROBLEMS / 182
5 Generation with Limited Energy Supply 187
5.1 Introduction / 187
5.2 Fuel Scheduling / 188
5.3 Take-or-Pay Fuel Supply Contract / 188
5.4 Complex Take-or-Pay Fuel Supply Models / 194
5.5 Fuel Scheduling by Linear Programming / 195
5.6 Introduction to Hydrothermal Coordination / 202
5.7 Hydroelectric Plant Models / 204
5.8 Scheduling Problems / 207
5.9 The Hydrothermal Scheduling Problem / 211
5.10 Hydro-Scheduling using Linear Programming / 222
APPENDIX 5A Dynamic-Programming Solution to hydrothermal Scheduling / 225
5.A.1 Dynamic Programming Example / 227
PROBLEMS / 234
6 Transmission System Effects 243
6.1 Introduction / 243
6.2 Conversion of Equipment Data to Bus and Branch Data / 247
6.3 Substation Bus Processing / 248
6.4 Equipment Modeling / 248
6.5 Dispatcher Power Flow for Operational Planning / 251
6.6 Conservation of Energy (Tellegen's T
Details
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Kraftwerktechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 656 S. |
ISBN-13: | 9780471790556 |
ISBN-10: | 0471790559 |
Sprache: | Englisch |
Herstellernummer: | 14679055000 |
Autor: |
Wood, Allen J.
Wollenberg, Bruce F. Sheblé, Gerald B. |
Auflage: | 3. Aufl. |
Hersteller: |
Wiley & Sons
Wiley-Interscience |
Maße: | 243 x 155 x 35 mm |
Von/Mit: | Allen J. Wood (u. a.) |
Erscheinungsdatum: | 24.12.2013 |
Gewicht: | 1,006 kg |
Warnhinweis