Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
72,25 €
-16 % UVP 85,59 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region.
The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion.
In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion.
In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region.
The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion.
In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion.
In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
Über den Autor
The author's interests lie in three interrelated topics: heat equations associated with second-order elliptic operators, Markov or diffusion processes and potential theory.
Zusammenfassung
Shows how solutions are morphed into local solutions on regions with curved boundaries
Discusses the connection between potential theory and Brownian motion
Introduces all the important concepts of classical potential theory
Equips readers for further study in elliptic partial differential equations, axiomatic potential theory and the interplay between probability theory and potential theory
Includes supplementary material: [...]
Inhaltsverzeichnis
Preliminaries.- Laplace's Equation.- The Dirichlet Problem.- Green Functions.- Negligible Sets.- Dirichlet Problem for Unbounded Regions.- Energy.- Interpolation and Monotonicity.- Newtonian Potential.- Elliptic Operators.- Apriori Bounds.- Oblique Derivative Problem.- Application to Diffusion Processes.
Details
Erscheinungsjahr: | 2014 |
---|---|
Fachbereich: | Analysis |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
485 S. 2 s/w Illustr. 485 p. 2 illus. |
ISBN-13: | 9781447164210 |
ISBN-10: | 1447164210 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Helms, Lester L. |
Auflage: | 2nd edition 2014 |
Hersteller: |
Springer London
Springer-Verlag London Ltd. |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 27 mm |
Von/Mit: | Lester L. Helms |
Erscheinungsdatum: | 30.04.2014 |
Gewicht: | 0,75 kg |