Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Point Cloud Processing for Environmental Analysis in Autonomous Driving using Deep Learning
Taschenbuch von Martin Simon
Sprache: Englisch

24,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Autonomous self-driving cars need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types, such as lidar scanners, are in use. This thesis contributes highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds originating from lidar sensors. First, a single-shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and joint probabilistic tracking to stabilize predictions and filter outliers. The last part presents an evaluation of data from automotive-grade lidar scanners. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation.
Autonomous self-driving cars need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types, such as lidar scanners, are in use. This thesis contributes highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds originating from lidar sensors. First, a single-shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and joint probabilistic tracking to stabilize predictions and filter outliers. The last part presents an evaluation of data from automotive-grade lidar scanners. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation.
Details
Erscheinungsjahr: 2023
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9783863602727
ISBN-10: 3863602722
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Simon, Martin
Hersteller: Universitätsverlag Ilmenau
Technische Universität Ilmenau
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 240 x 170 x 11 mm
Von/Mit: Martin Simon
Erscheinungsdatum: 01.01.2023
Gewicht: 0,336 kg
Artikel-ID: 126732194
Details
Erscheinungsjahr: 2023
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9783863602727
ISBN-10: 3863602722
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Simon, Martin
Hersteller: Universitätsverlag Ilmenau
Technische Universität Ilmenau
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 240 x 170 x 11 mm
Von/Mit: Martin Simon
Erscheinungsdatum: 01.01.2023
Gewicht: 0,336 kg
Artikel-ID: 126732194
Sicherheitshinweis