Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Physics for Scientists & Engineers with Modern Physics, Global Edition
Taschenbuch von Douglas Giancoli (u. a.)
Sprache: Englisch

71,20 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung

This title is a Pearson Global Edition. Theeditorial team at Pearson has worked closely with educators around the world toinclude content which is especially relevant to an international and diverseaudience.

Forcourses in introductory calculus-based physics.

Precise.Highly accurate. Carefully crafted.
Physics for Scientists and Engineers combines outstanding pedagogy and a clear and directnarrative with applications that draw the student into the physics at hand. Thetext gives students a thorough understanding of the basic concepts of physicsin all its aspects, from mechanics to modern physics. Each topic begins withconcrete observations and experiences that students can relate to theireveryday lives and future professions, and then moves to generalizations andthe more formal aspects of the physics to show why we believe what webelieve.

The 5thEdition presents a wide range of new applications including thephysics of digital, added approaches for practical problem-solving techniques,and new Pearson Mastering Physics resources that enhance the understanding ofphysics.

Pearson Mastering-« Physics is not included. Students, if Pearson MasteringPhysics is a recommended/mandatory component of the course, please ask yourinstructor for the correct ISBN. Pearson Mastering Physics should only bepurchased when required by an instructor. Instructors, contact your Pearsonrepresentative for more information.

This title is a Pearson Global Edition. Theeditorial team at Pearson has worked closely with educators around the world toinclude content which is especially relevant to an international and diverseaudience.

Forcourses in introductory calculus-based physics.

Precise.Highly accurate. Carefully crafted.
Physics for Scientists and Engineers combines outstanding pedagogy and a clear and directnarrative with applications that draw the student into the physics at hand. Thetext gives students a thorough understanding of the basic concepts of physicsin all its aspects, from mechanics to modern physics. Each topic begins withconcrete observations and experiences that students can relate to theireveryday lives and future professions, and then moves to generalizations andthe more formal aspects of the physics to show why we believe what webelieve.

The 5thEdition presents a wide range of new applications including thephysics of digital, added approaches for practical problem-solving techniques,and new Pearson Mastering Physics resources that enhance the understanding ofphysics.

Pearson Mastering-« Physics is not included. Students, if Pearson MasteringPhysics is a recommended/mandatory component of the course, please ask yourinstructor for the correct ISBN. Pearson Mastering Physics should only bepurchased when required by an instructor. Instructors, contact your Pearsonrepresentative for more information.

Über den Autor

Douglas C. Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley, his MS in physics at MIT, and his PhD in elementary particle physics back at UC Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley's Virus lab developing skills in molecular biology and biophysics. His mentors include Nobel winners Emilio Segre and Donald Glaser. He has taught a wide range of undergraduate courses, traditional as well as innovative ones, and continues to update his textbooks meticulously, seeking ways to better provide an understanding of physics for students. Doug's favorite spare-time activity is the outdoors, especially climbing peaks. He says climbing peaks is like learning physics: it takes effort and the rewards are great.

Inhaltsverzeichnis
  1. Introduction, Measurement, Estimating
    • How Science Works
    • Models, Theories, and Laws
    • Measurement and Uncertainty; Significant Figures
    • Units, Standards, and the SI System
    • Converting Units
    • Order of Magnitude: Rapid Estimating
    • *Dimensions and Dimensional Analysis
  2. Describing Motion: Kinematics in One Dimension
    • Reference Frames and Displacement
    • Average Velocity
    • Instantaneous Velocity
    • Acceleration
    • Motion at Constant Acceleration
    • Solving Problems
    • Freely Falling Objects
    • *Variable Acceleration; Integral Calculus
  3. Kinematics in Two or Three Dimensions; Vectors
    • Vectors and Scalars
    • Addition of VectorsGraphical Methods
    • Subtraction of Vectors, and Multiplication of a Vector by a Scalar
    • Adding Vectors by Components
    • Unit Vectors
    • Vector Kinematics
    • Solving Problems Involving Projectile Motion
    • Relative Velocity
  4. Dynamics: Newton's Laws of Motion
    • Force
    • Newton's First Law of Motion
    • Mass
    • Newton's Second Law of Motion
    • Newton's Third Law of Motion
    • Weightthe Force of Gravity; and the Normal Force
    • Solving Problems with Newton's Laws: Free-Body Diagrams
    • Problem SolvingA General Approach
  5. Using Newton's Laws: Friction, Circular Motion, Drag Forces
    • Using Newton's Laws with Friction
    • Uniform Circular MotionKinematics
    • Dynamics of Uniform Circular Motion
    • Highway Curves: Banked and Unbanked
    • Nonuniform Circular Motion
    • *Velocity-Dependent Forces: Drag and Terminal Velocity
  6. Gravitation and Newton's Synthesis
    • Newton's Law of Universal Gravitation
    • Vector Form of Newton's Law of Universal Gravitation
    • Gravity Near the Earth's Surface
    • Satellites and "Weightlessness"
    • Planets, Kepler's Laws, and Newton's Synthesis
    • Moon Rises an Hour Later Each Day
    • Types of Forces in Nature
    • *Gravitational Field
    • *Principle of Equivalence; Curvature of Space; Black Holes
  7. Work and Energy
    • Work Done by a Constant Force
    • Scalar Product of Two Vectors
    • Work Done by a Varying Force
    • Kinetic Energy and the Work-Energy Principle
  8. Conservation of Energy
    • Conservative and Nonconservative Forces
    • Potential Energy
    • Mechanical Energy and Its Conservation
    • Problem Solving Using Conservation of Mechanical Energy
    • The Law of Conservation of Energy
    • Energy Conservation with Dissipative Forces: Solving Problems
    • Gravitational Potential Energy and Escape Velocity
    • Power
    • Potential Energy Diagrams; Stable and Unstable Equilibrium
    • *Gravitational Assist (Slingshot)
  9. Linear Momentum
    • Momentum and Its Relation to Force
    • Conservation of Momentum
    • Collisions and Impulse
    • Conservation of Energy and Momentum in Collisions
    • Elastic Collisions in One Dimension
    • Inelastic Collisions
    • Collisions in 2 or 3 Dimensions
    • Center of Mass (cm)
    • Center of Mass and Translational Motion
    • *Systems of Variable Mass; Rocket Propulsion
  10. Rotational Motion
    • Angular Quantities
    • Vector Nature of Angular Quantities
    • Constant Angular Acceleration
    • Torque
    • Rotational Dynamics; Torque and Rotational Inertia
    • Solving Problems in Rotational Dynamics
    • Determining Moments of Inertia
    • Rotational Kinetic Energy
    • Rotational plus Translational Motion; Rolling
    • *Why Does a Rolling Sphere Slow Down?
  11. Angular Momentum; General Rotation
    • Angular MomentumObjects Rotating About a Fixed Axis
    • Vector Cross Product; Torque as a Vector
    • Angular Momentum of a Particle
    • Angular Momentum and Torque for a System of Particles; General Motion
    • Angular Momentum and Torque for a Rigid Object
    • Conservation of Angular Momentum
    • *The Spinning Top and Gyroscope
    • Rotating Frames of Reference; Inertial Forces
    • *The Coriolis Effect
  12. Static Equilibrium; Elasticity and Fracture
    • The Conditions for Equilibrium
    • Solving Statics Problems
    • *Applications to Muscles and Joints
    • Stability and Balance
    • Elasticity; Stress and Strain
    • Fracture
    • Trusses and Bridges
    • Arches and Domes
  13. Fluids
    • Phases of Matter
    • Density and Specific Gravity
    • Pressure in Fluids
    • Atmospheric Pressure and Gauge Pressure
    • Pascal's Principle
    • Measurement of Pressure; Gauges and the Barometer
    • Buoyancy and Archimedes' Principle
    • Fluids in Motion; Flow Rate and the Equation of Continuity
    • Bernoulli's Equation
    • Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs,Blood Flow
    • Viscosity
    • *Flow in Tubes: Poiseuille's Equation, Blood Flow
    • *Surface Tension and Capillarity
    • *Pumps, and the Heart
  14. Oscillations
    • Oscillations of a Spring
    • Simple Harmonic Motion
    • Energy in the Simple Harmonic Oscillator
    • Simple Harmonic Motion Related to Uniform Circular Motion
    • The Simple Pendulum
    • *The Physical Pendulum and the Torsion Pendulum
    • Damped Harmonic Motion
    • Forced Oscillations; Resonance
  15. Wave Motion
    • Characteristics of Wave Motion
    • Types of Waves: Transverse and Longitudinal
    • Energy Transported by Waves
    • Mathematical Representation of a Traveling Wave
    • *The Wave Equation
    • The Principle of Superposition
    • Reflection and Transmission
    • Interference
    • Standing Waves; Resonance
    • Refraction
    • Diffraction
  16. Sound
    • Characteristics of Sound
    • Mathematical Representation of Longitudinal Waves
    • Intensity of Sound: Decibels
    • Sources of Sound: Vibrating Strings and Air Columns
    • *Quality of Sound, and Noise; Superposition
    • Interference of Sound Waves; Beats
    • Doppler Effect
    • *Shock Waves and the Sonic Boom
    • *Applications: Sonar, Ultrasound, and Medical Imaging
  17. Temperature, Thermal Expansion, and the Ideal Gas Law
    • Atomic Theory of Matter
    • Temperature and Thermometers
    • Thermal Equilibrium and the Zeroth Law of Thermodynamics
    • Thermal Expansion
    • *Thermal Stresses
    • The Gas Laws and Absolute Temperature
    • The Ideal Gas Law
    • Problem Solving with the Ideal Gas Law
    • Ideal Gas Law in Terms of Molecules: Avogadro's Number
    • *Ideal Gas Temperature Scalea Standard
  18. Kinetic Theory of Gases
    • The Ideal Gas Law and the Molecular Interpretation of Temperature
    • Distribution of Molecular Speeds
    • Real Gases and Changes of Phase
    • Vapor Pressure and Humidity
    • Temperature of Water Decrease with Altitude
    • Van der Waals Equation of State
    • Mean Free Path
    • Diffusion
  19. Heat and the First Law of Thermodynamics
    • Heat as Energy Transfer
    • Internal Energy
    • Specific Heat
    • CalorimetrySolving Problems
    • Latent Heat
    • The First Law of Thermodynamics
    • Thermodynamic Processes and the First Law
    • Molar Specific Heats for Gases, and the Equipartition of Energy
    • Adiabatic Expansion of a Gas
    • Heat Transfer: Conduction, Convection, Radiation
  20. Second Law of Thermodynamics
    • The Second Law of ThermodynamicsIntroduction
    • Heat Engines
    • The Carnot Engine; Reversible and Irreversible Processes
    • Refrigerators, Air Conditioners, and Heat Pumps
    • Entropy
    • Entropy and the Second Law of Thermodynamics
    • Order to Disorder
    • Unavailability of Energy; Heat Death
    • Statistical Interpretation of Entropy and the Second Law
    • Thermodynamic Temperature; Third Law of Thermodynamics
    • *Thermal Pollution, Global Warming, and Energy Resources
  21. Electric Charge and Electric Field
    • Static Electricity; Electric Charge and Its Conservation
    • Electric Charge in the Atom
    • Insulators and Conductors
    • Induced Charge; the Electroscope
    • Coulomb's Law
    • The Electric Field
    • Electric Field Calculations for Continuous Charge Distributions
    • Field Lines
    • Electric Fields and Conductors
    • Motion of a Charged Particle in an Electric Field
    • Electric Dipoles
    • *Electric Forces in Molecular Biology: DNA Structure and Replication
  22. Gauss's Law
    • Electric Flux
    • Gauss's Law
    • Applications of Gauss's Law
    • *Experimental Basis of Gauss's and Coulomb's Laws
  23. Electric Potential
    • Electric Potential Energy and Potential Difference
    • Relation between Electric Potential and Electric Field
    • Electric Potential Due to Point Charges
    • Potential Due to Any Charge Distribution
    • Equipotential Lines and Surfaces
    • Potential Due to...
Details
Erscheinungsjahr: 2023
Fachbereich: Astronomie
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292440279
ISBN-10: 1292440279
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Giancoli, Douglas
Giancoli, Douglas C.
Auflage: 5. Auflage
Hersteller: Pearson
Maße: 273 x 213 x 59 mm
Von/Mit: Douglas Giancoli (u. a.)
Erscheinungsdatum: 25.07.2023
Gewicht: 3,123 kg
Artikel-ID: 121356920
Über den Autor

Douglas C. Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley, his MS in physics at MIT, and his PhD in elementary particle physics back at UC Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley's Virus lab developing skills in molecular biology and biophysics. His mentors include Nobel winners Emilio Segre and Donald Glaser. He has taught a wide range of undergraduate courses, traditional as well as innovative ones, and continues to update his textbooks meticulously, seeking ways to better provide an understanding of physics for students. Doug's favorite spare-time activity is the outdoors, especially climbing peaks. He says climbing peaks is like learning physics: it takes effort and the rewards are great.

Inhaltsverzeichnis
  1. Introduction, Measurement, Estimating
    • How Science Works
    • Models, Theories, and Laws
    • Measurement and Uncertainty; Significant Figures
    • Units, Standards, and the SI System
    • Converting Units
    • Order of Magnitude: Rapid Estimating
    • *Dimensions and Dimensional Analysis
  2. Describing Motion: Kinematics in One Dimension
    • Reference Frames and Displacement
    • Average Velocity
    • Instantaneous Velocity
    • Acceleration
    • Motion at Constant Acceleration
    • Solving Problems
    • Freely Falling Objects
    • *Variable Acceleration; Integral Calculus
  3. Kinematics in Two or Three Dimensions; Vectors
    • Vectors and Scalars
    • Addition of VectorsGraphical Methods
    • Subtraction of Vectors, and Multiplication of a Vector by a Scalar
    • Adding Vectors by Components
    • Unit Vectors
    • Vector Kinematics
    • Solving Problems Involving Projectile Motion
    • Relative Velocity
  4. Dynamics: Newton's Laws of Motion
    • Force
    • Newton's First Law of Motion
    • Mass
    • Newton's Second Law of Motion
    • Newton's Third Law of Motion
    • Weightthe Force of Gravity; and the Normal Force
    • Solving Problems with Newton's Laws: Free-Body Diagrams
    • Problem SolvingA General Approach
  5. Using Newton's Laws: Friction, Circular Motion, Drag Forces
    • Using Newton's Laws with Friction
    • Uniform Circular MotionKinematics
    • Dynamics of Uniform Circular Motion
    • Highway Curves: Banked and Unbanked
    • Nonuniform Circular Motion
    • *Velocity-Dependent Forces: Drag and Terminal Velocity
  6. Gravitation and Newton's Synthesis
    • Newton's Law of Universal Gravitation
    • Vector Form of Newton's Law of Universal Gravitation
    • Gravity Near the Earth's Surface
    • Satellites and "Weightlessness"
    • Planets, Kepler's Laws, and Newton's Synthesis
    • Moon Rises an Hour Later Each Day
    • Types of Forces in Nature
    • *Gravitational Field
    • *Principle of Equivalence; Curvature of Space; Black Holes
  7. Work and Energy
    • Work Done by a Constant Force
    • Scalar Product of Two Vectors
    • Work Done by a Varying Force
    • Kinetic Energy and the Work-Energy Principle
  8. Conservation of Energy
    • Conservative and Nonconservative Forces
    • Potential Energy
    • Mechanical Energy and Its Conservation
    • Problem Solving Using Conservation of Mechanical Energy
    • The Law of Conservation of Energy
    • Energy Conservation with Dissipative Forces: Solving Problems
    • Gravitational Potential Energy and Escape Velocity
    • Power
    • Potential Energy Diagrams; Stable and Unstable Equilibrium
    • *Gravitational Assist (Slingshot)
  9. Linear Momentum
    • Momentum and Its Relation to Force
    • Conservation of Momentum
    • Collisions and Impulse
    • Conservation of Energy and Momentum in Collisions
    • Elastic Collisions in One Dimension
    • Inelastic Collisions
    • Collisions in 2 or 3 Dimensions
    • Center of Mass (cm)
    • Center of Mass and Translational Motion
    • *Systems of Variable Mass; Rocket Propulsion
  10. Rotational Motion
    • Angular Quantities
    • Vector Nature of Angular Quantities
    • Constant Angular Acceleration
    • Torque
    • Rotational Dynamics; Torque and Rotational Inertia
    • Solving Problems in Rotational Dynamics
    • Determining Moments of Inertia
    • Rotational Kinetic Energy
    • Rotational plus Translational Motion; Rolling
    • *Why Does a Rolling Sphere Slow Down?
  11. Angular Momentum; General Rotation
    • Angular MomentumObjects Rotating About a Fixed Axis
    • Vector Cross Product; Torque as a Vector
    • Angular Momentum of a Particle
    • Angular Momentum and Torque for a System of Particles; General Motion
    • Angular Momentum and Torque for a Rigid Object
    • Conservation of Angular Momentum
    • *The Spinning Top and Gyroscope
    • Rotating Frames of Reference; Inertial Forces
    • *The Coriolis Effect
  12. Static Equilibrium; Elasticity and Fracture
    • The Conditions for Equilibrium
    • Solving Statics Problems
    • *Applications to Muscles and Joints
    • Stability and Balance
    • Elasticity; Stress and Strain
    • Fracture
    • Trusses and Bridges
    • Arches and Domes
  13. Fluids
    • Phases of Matter
    • Density and Specific Gravity
    • Pressure in Fluids
    • Atmospheric Pressure and Gauge Pressure
    • Pascal's Principle
    • Measurement of Pressure; Gauges and the Barometer
    • Buoyancy and Archimedes' Principle
    • Fluids in Motion; Flow Rate and the Equation of Continuity
    • Bernoulli's Equation
    • Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs,Blood Flow
    • Viscosity
    • *Flow in Tubes: Poiseuille's Equation, Blood Flow
    • *Surface Tension and Capillarity
    • *Pumps, and the Heart
  14. Oscillations
    • Oscillations of a Spring
    • Simple Harmonic Motion
    • Energy in the Simple Harmonic Oscillator
    • Simple Harmonic Motion Related to Uniform Circular Motion
    • The Simple Pendulum
    • *The Physical Pendulum and the Torsion Pendulum
    • Damped Harmonic Motion
    • Forced Oscillations; Resonance
  15. Wave Motion
    • Characteristics of Wave Motion
    • Types of Waves: Transverse and Longitudinal
    • Energy Transported by Waves
    • Mathematical Representation of a Traveling Wave
    • *The Wave Equation
    • The Principle of Superposition
    • Reflection and Transmission
    • Interference
    • Standing Waves; Resonance
    • Refraction
    • Diffraction
  16. Sound
    • Characteristics of Sound
    • Mathematical Representation of Longitudinal Waves
    • Intensity of Sound: Decibels
    • Sources of Sound: Vibrating Strings and Air Columns
    • *Quality of Sound, and Noise; Superposition
    • Interference of Sound Waves; Beats
    • Doppler Effect
    • *Shock Waves and the Sonic Boom
    • *Applications: Sonar, Ultrasound, and Medical Imaging
  17. Temperature, Thermal Expansion, and the Ideal Gas Law
    • Atomic Theory of Matter
    • Temperature and Thermometers
    • Thermal Equilibrium and the Zeroth Law of Thermodynamics
    • Thermal Expansion
    • *Thermal Stresses
    • The Gas Laws and Absolute Temperature
    • The Ideal Gas Law
    • Problem Solving with the Ideal Gas Law
    • Ideal Gas Law in Terms of Molecules: Avogadro's Number
    • *Ideal Gas Temperature Scalea Standard
  18. Kinetic Theory of Gases
    • The Ideal Gas Law and the Molecular Interpretation of Temperature
    • Distribution of Molecular Speeds
    • Real Gases and Changes of Phase
    • Vapor Pressure and Humidity
    • Temperature of Water Decrease with Altitude
    • Van der Waals Equation of State
    • Mean Free Path
    • Diffusion
  19. Heat and the First Law of Thermodynamics
    • Heat as Energy Transfer
    • Internal Energy
    • Specific Heat
    • CalorimetrySolving Problems
    • Latent Heat
    • The First Law of Thermodynamics
    • Thermodynamic Processes and the First Law
    • Molar Specific Heats for Gases, and the Equipartition of Energy
    • Adiabatic Expansion of a Gas
    • Heat Transfer: Conduction, Convection, Radiation
  20. Second Law of Thermodynamics
    • The Second Law of ThermodynamicsIntroduction
    • Heat Engines
    • The Carnot Engine; Reversible and Irreversible Processes
    • Refrigerators, Air Conditioners, and Heat Pumps
    • Entropy
    • Entropy and the Second Law of Thermodynamics
    • Order to Disorder
    • Unavailability of Energy; Heat Death
    • Statistical Interpretation of Entropy and the Second Law
    • Thermodynamic Temperature; Third Law of Thermodynamics
    • *Thermal Pollution, Global Warming, and Energy Resources
  21. Electric Charge and Electric Field
    • Static Electricity; Electric Charge and Its Conservation
    • Electric Charge in the Atom
    • Insulators and Conductors
    • Induced Charge; the Electroscope
    • Coulomb's Law
    • The Electric Field
    • Electric Field Calculations for Continuous Charge Distributions
    • Field Lines
    • Electric Fields and Conductors
    • Motion of a Charged Particle in an Electric Field
    • Electric Dipoles
    • *Electric Forces in Molecular Biology: DNA Structure and Replication
  22. Gauss's Law
    • Electric Flux
    • Gauss's Law
    • Applications of Gauss's Law
    • *Experimental Basis of Gauss's and Coulomb's Laws
  23. Electric Potential
    • Electric Potential Energy and Potential Difference
    • Relation between Electric Potential and Electric Field
    • Electric Potential Due to Point Charges
    • Potential Due to Any Charge Distribution
    • Equipotential Lines and Surfaces
    • Potential Due to...
Details
Erscheinungsjahr: 2023
Fachbereich: Astronomie
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781292440279
ISBN-10: 1292440279
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Giancoli, Douglas
Giancoli, Douglas C.
Auflage: 5. Auflage
Hersteller: Pearson
Maße: 273 x 213 x 59 mm
Von/Mit: Douglas Giancoli (u. a.)
Erscheinungsdatum: 25.07.2023
Gewicht: 3,123 kg
Artikel-ID: 121356920
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte