Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Organic Chemistry
Theory, Reactivity and Mechanisms in Modern Synthesis
Buch von Pierre Vogel (u. a.)
Sprache: Englisch

101,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Das erfolgreiche Arbeiten mit organischen Reaktionen erfordert Wissen über Reaktivität, Reaktionsmechanismen, Thermodynamik und weitere Grundlagen der physikalisch-organischen Chemie. Das Lehrbuch vermittelt dieses Wissen. Auch erhältlich: das Arbeitsbuch zum Lehrbuch.
Das erfolgreiche Arbeiten mit organischen Reaktionen erfordert Wissen über Reaktivität, Reaktionsmechanismen, Thermodynamik und weitere Grundlagen der physikalisch-organischen Chemie. Das Lehrbuch vermittelt dieses Wissen. Auch erhältlich: das Arbeitsbuch zum Lehrbuch.
Über den Autor
Kendall Houk is Saul Winstein Professor at the University of California Los Angeles (UCLA). He is an authority on theoretical and computational organic chemistry. Professor Houk has published nearly 1100 articles in refereed journals and is among the 100 most-cited chemists.

Pierre Vogel is Professor of Organic Chemistry at the EPFL (Swiss Institute of Technology) in Lausanne, Switzerland. He has published three books and has co-authored more than 490 publications in fields such as physical organic chemistry, organic and organometallic synthesis, and catalysis.
Inhaltsverzeichnis

Preface xv

Foreword xxix

1 Equilibria and thermochemistry 1

1.1 Introduction 1

1.2 Equilibrium-free enthalpy: reaction-free energy or Gibbs energy 1

1.3 Heat of reaction and variation of the entropy of reaction (reaction entropy) 2

1.4 Statistical thermodynamics 4

1.4.1 Contributions from translation energy levels 5

1.4.2 Contributions from rotational energy levels 5

1.4.3 Contributions from vibrational energy levels 6

1.4.4 Entropy of reaction depends above all on the change of the number of molecules between products and reactants 7

1.4.5 Additions are favored thermodynamically on cooling, fragmentations on heating 7

1.5 Standard heats of formation 8

1.6 What do standard heats of formation tell us about chemical bonding and ground-state properties of organic compounds? 9

1.6.1 Effect of electronegativity on bond strength 10

1.6.2 Effects of electronegativity and of hyperconjugation 11

1.6.3 ¿-Conjugation and hyperconjugation in carboxylic functions 12

1.6.4 Degree of chain branching and Markovnikov's rule 13

1.7 Standard heats of typical organic reactions 14

1.7.1 Standard heats of hydrogenation and hydrocarbation 14

1.7.2 Standard heats of C-H oxidations 15

1.7.3 Relative stabilities of alkyl-substituted ethylenes 17

1.7.4 Effect of fluoro substituents on hydrocarbon stabilities 17

1.7.5 Storage of hydrogen in the form of formic acid 18

1.8 Ionization energies and electron affinities 20

1.9 Homolytic bond dissociations; heats of formation of radicals 22

1.9.1 Measurement of bond dissociation energies 22

1.9.2 Substituent effects on the relative stabilities of radicals 25

1.9.3 ¿-Conjugation in benzyl, allyl, and propargyl radicals 25

1.10 Heterolytic bond dissociation enthalpies 28

1.10.1 Measurement of gas-phase heterolytic bond dissociation enthalpies 28

1.10.2 Thermochemistry of ions in the gas phase 29

1.10.3 Gas-phase acidities 30

1.11 Electron transfer equilibria 32

1.12 Heats of formation of neutral, transient compounds 32

1.12.1 Measurements of the heats of formation of carbenes 32

1.12.2 Measurements of the heats of formation of diradicals 33

1.12.3 Keto/enol tautomerism 33

1.12.4 Heat of formation of highly reactive cyclobutadiene 36

1.12.5 Estimate of heats of formation of diradicals 36

1.13 Electronegativity and absolute hardness 37

1.14 Chemical conversion and selectivity controlled by thermodynamics 40

1.14.1 Equilibrium shifts (Le Chatelier's principle in action) 40

1.14.2 Importance of chirality in biology and medicine 41

1.14.3 Resolution of racemates into enantiomers 43

1.14.4 Thermodynamically controlled deracemization 46

1.14.5 Self-disproportionation of enantiomers 48

1.15 Thermodynamic (equilibrium) isotopic effects 49

1.A Appendix, Table 1.A.1 to Table 1.A.24 53

References 92

2 Additivity rules for thermodynamic parameters and deviations 109

2.1 Introduction 109

2.2 Molecular groups 110

2.3 Determination of the standard group equivalents (group equivalents) 111

2.4 Determination of standard entropy increments 113

2.5 Steric effects 114

2.5.1 Gauche interactions: the preferred conformations of alkyl chains 114

2.5.2 (E)- vs. (Z)-alkenes and ortho-substitution in benzene derivatives 117

2.6 Ring strain and conformational flexibility of cyclic compounds 117

2.6.1 Cyclopropane and cyclobutane have nearly the same strain energy 118

2.6.2 Cyclopentane is a flexible cycloalkane 119

2.6.3 Conformational analysis of cyclohexane 119

2.6.4 Conformational analysis of cyclohexanones 121

2.6.5 Conformational analysis of cyclohexene 122

2.6.6 Medium-sized cycloalkanes 122

2.6.7 Conformations and ring strain in polycycloalkanes 124

2.6.8 Ring strain in cycloalkenes 125

2.6.9 Bredt's rule and "anti-Bredt" alkenes 125

2.6.10 Allylic 1,3- and 1,2-strain: the model of banana bonds 126

2.7 ¿/¿-, n/¿-, ¿/¿-, and n/¿-interactions 127

2.7.1 Conjugated dienes and diynes 127

2.7.2 Atropisomerism in 1,3-dienes and diaryl compounds 129

2.7.3 ¿,ß-Unsaturated carbonyl compounds 130

2.7.4 Stabilization by aromaticity 130

2.7.5 Stabilization by n(Z:)/¿ conjugation 132

2.7.6 ¿/¿-Conjugation and ¿/¿-hyperconjugation in esters, thioesters, and amides 133

2.7.7 Oximes are more stable than imines toward hydrolysis 136

2.7.8 Aromatic stabilization energies of heterocyclic compounds 136

2.7.9 Geminal disubstitution: enthalpic anomeric effects 139

2.7.10 Conformational anomeric effect 141

2.8 Other deviations to additivity rules 144

2.9 Major role of translational entropy on equilibria 146

2.9.1 Aldol and crotonalization reactions 146

2.9.2 Aging of wines 148

2.10 Entropy of cyclization: loss of degrees of free rotation 151

2.11 Entropy as a synthetic tool 151

2.11.1 Pyrolysis of esters 151

2.11.2 Method of Chugaev 152

2.11.3 Eschenmoser-Tanabe fragmentation 152

2.11.4 Eschenmoser fragmentation 153

2.11.5 Thermal 1,4-eliminations 153

2.11.6 Retro-Diels-Alder reactions 156

2.A Appendix, Table 2.A.1 to Table 2.A.2 157

References 161

3 Rates of chemical reactions 177

3.1 Introduction 177

3.2 Differential and integrated rate laws 177

3.2.1 Order of reactions 178

3.2.2 Molecularity and reaction mechanisms 179

3.2.3 Examples of zero order reactions 181

3.2.4 Reversible reactions 182

3.2.5 Parallel reactions 183

3.2.6 Consecutive reactions and steady-state approximation 183

3.2.7 Consecutive reactions: maximum yield of the intermediate product 184

3.2.8 Homogeneous catalysis: Michaelis-Menten kinetics 185

3.2.9 Competitive vs. noncompetitive inhibition 186

3.2.10 Heterogeneous catalysis: reactions at surfaces 187

3.3 Activation parameters 188

3.3.1 Temperature effect on the selectivity of two parallel reactions 190

3.3.2 The Curtin-Hammett principle 190

3.4 Relationship between activation entropy and the reaction mechanism 192

3.4.1 Homolysis and radical combination in the gas phase 192

3.4.2 Isomerizations in the gas phase 193

3.4.3 Example of homolysis assisted by bond formation: the Cope rearrangement 195

3.4.4 Example of homolysis assisted by bond-breaking and bond-forming processes: retro-carbonyl-ene reaction 195

3.4.5 Can a reaction be assisted by neighboring groups? 197

3.5 Competition between cyclization and intermolecular condensation 197

3.5.1 Thorpe-Ingold effect 198

3.6 Effect of pressure: activation volume 201

3.6.1 Relationship between activation volume and the mechanism of reaction 201

3.6.2 Detection of change of mechanism 202

3.6.3 Synthetic applications of high pressure 203

3.6.4 Rate enhancement by compression of reactants along the reaction coordinates 204

3.6.5 Structural effects on the rate of the Bergman rearrangement 205

3.7 Asymmetric organic synthesis 206

3.7.1 Kinetic resolution 206

3.7.2 Parallel kinetic resolution 211

3.7.3 Dynamic kinetic resolution: kinetic deracemization 212

3.7.4 Synthesis starting from enantiomerically pure natural compounds 215

3.7.5 Use of recoverable chiral auxiliaries 217

3.7.6 Catalytic desymmetrization of achiral compounds 220

3.7.7 Nonlinear effects in asymmetric synthesis 226

3.7.8 Asymmetric autocatalysis 228

3.8 Chemo- and site-selective reactions 229

3.9 Kinetic isotope effects and reaction mechanisms 231

3.9.1 Primary kinetic isotope effects: the case of hydrogen transfers 231

3.9.2 Tunneling effects 232

3.9.3 Nucleophilic substitution and elimination reactions 234

3.9.4 Steric effect on kinetic isotope effects 239

3.9.5 Simultaneous determination of multiple small kinetic isotope effects at natural abundance 239

References 240

4 Molecular orbital theories 271

4.1 Introduction 271

4.2 Background of quantum chemistry 271

4.3 Schrödinger equation 272

4.4 Coulson and Longuet-Higgins approach 274

4.4.1 Hydrogen molecule 275

4.4.2 Hydrogenoid molecules: The PMO theory 276

4.5 Hückel method 277

4.5.1 ¿-Molecular orbitals of ethylene 278

4.5.2 Allyl cation, radical, and anion 279

4.5.3 Shape of allyl ¿-molecular orbitals 282

4.5.4 Cyclopropenyl systems 282

4.5.5 Butadiene 285

4.5.6 Cyclobutadiene and its electronic destabilization (antiaromaticity) 286

4.5.7 Geometries of cyclobutadienes, singlet and triplet states 288

4.5.8 Pentadienyl and cyclopentadienyl systems 291

4.5.9 Cyclopentadienyl anion and bishomocyclopentadienyl anions 292

4.5.10 Benzene and its aromatic stabilization energy 294

4.5.11 3,4-Dimethylidenecyclobutene is not stabilized by ¿-conjugation 295

4.5.12 Fulvene 297

4.5.13 [N]Annulenes 298

4.5.14 Cyclooctatetraene 301

4.5.15 ¿-systems with heteroatoms 302

4.6 Aromatic stabilization energy of heterocyclic compounds 305

4.7 Homoconjugation 308

4.7.1 Homoaromaticity in cyclobutenyl cation 308

4.7.2 Homoaromaticity in homotropylium cation 308

4.7.3 Homoaromaticity in cycloheptatriene 310

4.7.4 Bishomoaromaticity in bishomotropylium ions 311

4.7.5...

Details
Erscheinungsjahr: 2019
Fachbereich: Organische Chemie
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 1382 S.
66 s/w Tab.
66 Illustr.
ISBN-13: 9783527345328
ISBN-10: 3527345329
Sprache: Englisch
Herstellernummer: 1134532 000
Einband: Gebunden
Autor: Vogel, Pierre
Houk, Kendall N.
Hersteller: Wiley-VCH
Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Abbildungen: 1000 schwarz-weiße und 100 farbige Abbildungen
Maße: 284 x 225 x 58 mm
Von/Mit: Pierre Vogel (u. a.)
Erscheinungsdatum: 04.09.2019
Gewicht: 3,602 kg
Artikel-ID: 115036507
Über den Autor
Kendall Houk is Saul Winstein Professor at the University of California Los Angeles (UCLA). He is an authority on theoretical and computational organic chemistry. Professor Houk has published nearly 1100 articles in refereed journals and is among the 100 most-cited chemists.

Pierre Vogel is Professor of Organic Chemistry at the EPFL (Swiss Institute of Technology) in Lausanne, Switzerland. He has published three books and has co-authored more than 490 publications in fields such as physical organic chemistry, organic and organometallic synthesis, and catalysis.
Inhaltsverzeichnis

Preface xv

Foreword xxix

1 Equilibria and thermochemistry 1

1.1 Introduction 1

1.2 Equilibrium-free enthalpy: reaction-free energy or Gibbs energy 1

1.3 Heat of reaction and variation of the entropy of reaction (reaction entropy) 2

1.4 Statistical thermodynamics 4

1.4.1 Contributions from translation energy levels 5

1.4.2 Contributions from rotational energy levels 5

1.4.3 Contributions from vibrational energy levels 6

1.4.4 Entropy of reaction depends above all on the change of the number of molecules between products and reactants 7

1.4.5 Additions are favored thermodynamically on cooling, fragmentations on heating 7

1.5 Standard heats of formation 8

1.6 What do standard heats of formation tell us about chemical bonding and ground-state properties of organic compounds? 9

1.6.1 Effect of electronegativity on bond strength 10

1.6.2 Effects of electronegativity and of hyperconjugation 11

1.6.3 ¿-Conjugation and hyperconjugation in carboxylic functions 12

1.6.4 Degree of chain branching and Markovnikov's rule 13

1.7 Standard heats of typical organic reactions 14

1.7.1 Standard heats of hydrogenation and hydrocarbation 14

1.7.2 Standard heats of C-H oxidations 15

1.7.3 Relative stabilities of alkyl-substituted ethylenes 17

1.7.4 Effect of fluoro substituents on hydrocarbon stabilities 17

1.7.5 Storage of hydrogen in the form of formic acid 18

1.8 Ionization energies and electron affinities 20

1.9 Homolytic bond dissociations; heats of formation of radicals 22

1.9.1 Measurement of bond dissociation energies 22

1.9.2 Substituent effects on the relative stabilities of radicals 25

1.9.3 ¿-Conjugation in benzyl, allyl, and propargyl radicals 25

1.10 Heterolytic bond dissociation enthalpies 28

1.10.1 Measurement of gas-phase heterolytic bond dissociation enthalpies 28

1.10.2 Thermochemistry of ions in the gas phase 29

1.10.3 Gas-phase acidities 30

1.11 Electron transfer equilibria 32

1.12 Heats of formation of neutral, transient compounds 32

1.12.1 Measurements of the heats of formation of carbenes 32

1.12.2 Measurements of the heats of formation of diradicals 33

1.12.3 Keto/enol tautomerism 33

1.12.4 Heat of formation of highly reactive cyclobutadiene 36

1.12.5 Estimate of heats of formation of diradicals 36

1.13 Electronegativity and absolute hardness 37

1.14 Chemical conversion and selectivity controlled by thermodynamics 40

1.14.1 Equilibrium shifts (Le Chatelier's principle in action) 40

1.14.2 Importance of chirality in biology and medicine 41

1.14.3 Resolution of racemates into enantiomers 43

1.14.4 Thermodynamically controlled deracemization 46

1.14.5 Self-disproportionation of enantiomers 48

1.15 Thermodynamic (equilibrium) isotopic effects 49

1.A Appendix, Table 1.A.1 to Table 1.A.24 53

References 92

2 Additivity rules for thermodynamic parameters and deviations 109

2.1 Introduction 109

2.2 Molecular groups 110

2.3 Determination of the standard group equivalents (group equivalents) 111

2.4 Determination of standard entropy increments 113

2.5 Steric effects 114

2.5.1 Gauche interactions: the preferred conformations of alkyl chains 114

2.5.2 (E)- vs. (Z)-alkenes and ortho-substitution in benzene derivatives 117

2.6 Ring strain and conformational flexibility of cyclic compounds 117

2.6.1 Cyclopropane and cyclobutane have nearly the same strain energy 118

2.6.2 Cyclopentane is a flexible cycloalkane 119

2.6.3 Conformational analysis of cyclohexane 119

2.6.4 Conformational analysis of cyclohexanones 121

2.6.5 Conformational analysis of cyclohexene 122

2.6.6 Medium-sized cycloalkanes 122

2.6.7 Conformations and ring strain in polycycloalkanes 124

2.6.8 Ring strain in cycloalkenes 125

2.6.9 Bredt's rule and "anti-Bredt" alkenes 125

2.6.10 Allylic 1,3- and 1,2-strain: the model of banana bonds 126

2.7 ¿/¿-, n/¿-, ¿/¿-, and n/¿-interactions 127

2.7.1 Conjugated dienes and diynes 127

2.7.2 Atropisomerism in 1,3-dienes and diaryl compounds 129

2.7.3 ¿,ß-Unsaturated carbonyl compounds 130

2.7.4 Stabilization by aromaticity 130

2.7.5 Stabilization by n(Z:)/¿ conjugation 132

2.7.6 ¿/¿-Conjugation and ¿/¿-hyperconjugation in esters, thioesters, and amides 133

2.7.7 Oximes are more stable than imines toward hydrolysis 136

2.7.8 Aromatic stabilization energies of heterocyclic compounds 136

2.7.9 Geminal disubstitution: enthalpic anomeric effects 139

2.7.10 Conformational anomeric effect 141

2.8 Other deviations to additivity rules 144

2.9 Major role of translational entropy on equilibria 146

2.9.1 Aldol and crotonalization reactions 146

2.9.2 Aging of wines 148

2.10 Entropy of cyclization: loss of degrees of free rotation 151

2.11 Entropy as a synthetic tool 151

2.11.1 Pyrolysis of esters 151

2.11.2 Method of Chugaev 152

2.11.3 Eschenmoser-Tanabe fragmentation 152

2.11.4 Eschenmoser fragmentation 153

2.11.5 Thermal 1,4-eliminations 153

2.11.6 Retro-Diels-Alder reactions 156

2.A Appendix, Table 2.A.1 to Table 2.A.2 157

References 161

3 Rates of chemical reactions 177

3.1 Introduction 177

3.2 Differential and integrated rate laws 177

3.2.1 Order of reactions 178

3.2.2 Molecularity and reaction mechanisms 179

3.2.3 Examples of zero order reactions 181

3.2.4 Reversible reactions 182

3.2.5 Parallel reactions 183

3.2.6 Consecutive reactions and steady-state approximation 183

3.2.7 Consecutive reactions: maximum yield of the intermediate product 184

3.2.8 Homogeneous catalysis: Michaelis-Menten kinetics 185

3.2.9 Competitive vs. noncompetitive inhibition 186

3.2.10 Heterogeneous catalysis: reactions at surfaces 187

3.3 Activation parameters 188

3.3.1 Temperature effect on the selectivity of two parallel reactions 190

3.3.2 The Curtin-Hammett principle 190

3.4 Relationship between activation entropy and the reaction mechanism 192

3.4.1 Homolysis and radical combination in the gas phase 192

3.4.2 Isomerizations in the gas phase 193

3.4.3 Example of homolysis assisted by bond formation: the Cope rearrangement 195

3.4.4 Example of homolysis assisted by bond-breaking and bond-forming processes: retro-carbonyl-ene reaction 195

3.4.5 Can a reaction be assisted by neighboring groups? 197

3.5 Competition between cyclization and intermolecular condensation 197

3.5.1 Thorpe-Ingold effect 198

3.6 Effect of pressure: activation volume 201

3.6.1 Relationship between activation volume and the mechanism of reaction 201

3.6.2 Detection of change of mechanism 202

3.6.3 Synthetic applications of high pressure 203

3.6.4 Rate enhancement by compression of reactants along the reaction coordinates 204

3.6.5 Structural effects on the rate of the Bergman rearrangement 205

3.7 Asymmetric organic synthesis 206

3.7.1 Kinetic resolution 206

3.7.2 Parallel kinetic resolution 211

3.7.3 Dynamic kinetic resolution: kinetic deracemization 212

3.7.4 Synthesis starting from enantiomerically pure natural compounds 215

3.7.5 Use of recoverable chiral auxiliaries 217

3.7.6 Catalytic desymmetrization of achiral compounds 220

3.7.7 Nonlinear effects in asymmetric synthesis 226

3.7.8 Asymmetric autocatalysis 228

3.8 Chemo- and site-selective reactions 229

3.9 Kinetic isotope effects and reaction mechanisms 231

3.9.1 Primary kinetic isotope effects: the case of hydrogen transfers 231

3.9.2 Tunneling effects 232

3.9.3 Nucleophilic substitution and elimination reactions 234

3.9.4 Steric effect on kinetic isotope effects 239

3.9.5 Simultaneous determination of multiple small kinetic isotope effects at natural abundance 239

References 240

4 Molecular orbital theories 271

4.1 Introduction 271

4.2 Background of quantum chemistry 271

4.3 Schrödinger equation 272

4.4 Coulson and Longuet-Higgins approach 274

4.4.1 Hydrogen molecule 275

4.4.2 Hydrogenoid molecules: The PMO theory 276

4.5 Hückel method 277

4.5.1 ¿-Molecular orbitals of ethylene 278

4.5.2 Allyl cation, radical, and anion 279

4.5.3 Shape of allyl ¿-molecular orbitals 282

4.5.4 Cyclopropenyl systems 282

4.5.5 Butadiene 285

4.5.6 Cyclobutadiene and its electronic destabilization (antiaromaticity) 286

4.5.7 Geometries of cyclobutadienes, singlet and triplet states 288

4.5.8 Pentadienyl and cyclopentadienyl systems 291

4.5.9 Cyclopentadienyl anion and bishomocyclopentadienyl anions 292

4.5.10 Benzene and its aromatic stabilization energy 294

4.5.11 3,4-Dimethylidenecyclobutene is not stabilized by ¿-conjugation 295

4.5.12 Fulvene 297

4.5.13 [N]Annulenes 298

4.5.14 Cyclooctatetraene 301

4.5.15 ¿-systems with heteroatoms 302

4.6 Aromatic stabilization energy of heterocyclic compounds 305

4.7 Homoconjugation 308

4.7.1 Homoaromaticity in cyclobutenyl cation 308

4.7.2 Homoaromaticity in homotropylium cation 308

4.7.3 Homoaromaticity in cycloheptatriene 310

4.7.4 Bishomoaromaticity in bishomotropylium ions 311

4.7.5...

Details
Erscheinungsjahr: 2019
Fachbereich: Organische Chemie
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 1382 S.
66 s/w Tab.
66 Illustr.
ISBN-13: 9783527345328
ISBN-10: 3527345329
Sprache: Englisch
Herstellernummer: 1134532 000
Einband: Gebunden
Autor: Vogel, Pierre
Houk, Kendall N.
Hersteller: Wiley-VCH
Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Abbildungen: 1000 schwarz-weiße und 100 farbige Abbildungen
Maße: 284 x 225 x 58 mm
Von/Mit: Pierre Vogel (u. a.)
Erscheinungsdatum: 04.09.2019
Gewicht: 3,602 kg
Artikel-ID: 115036507
Sicherheitshinweis