Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Optimization of Spiking Neural Networks for Radar Applications
Taschenbuch von Muhammad Arsalan
Sprache: Englisch

102,95 €*

-13 % UVP 117,69 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This book offers a comprehensive exploration of the transformative role that edge devices play in advancing Internet of Things (IoT) applications. By providing real-time processing, reduced latency, increased efficiency, improved security, and scalability, edge devices are at the forefront of enabling IoT growth and success. As the adoption of AI on the edge continues to surge, the demand for real-time data processing is escalating, driving innovation in AI and fostering the development of cutting-edge applications and use cases. Delving into the intricacies of traditional deep neural network (deepNet) approaches, the book addresses concerns about their energy efficiency during inference, particularly for edge devices. The energy consumption of deepNets, largely attributed to Multiply-accumulate (MAC) operations between layers, is scrutinized. Researchers are actively working on reducing energy consumption through strategies such as tiny networks, pruning approaches, and weight quantization. Additionally, the book sheds light on the challenges posed by the physical size of AI accelerators for edge devices. The central focus of the book is an in-depth examination of SNNs' capabilities in radar data processing, featuring the development of optimized algorithms.
This book offers a comprehensive exploration of the transformative role that edge devices play in advancing Internet of Things (IoT) applications. By providing real-time processing, reduced latency, increased efficiency, improved security, and scalability, edge devices are at the forefront of enabling IoT growth and success. As the adoption of AI on the edge continues to surge, the demand for real-time data processing is escalating, driving innovation in AI and fostering the development of cutting-edge applications and use cases. Delving into the intricacies of traditional deep neural network (deepNet) approaches, the book addresses concerns about their energy efficiency during inference, particularly for edge devices. The energy consumption of deepNets, largely attributed to Multiply-accumulate (MAC) operations between layers, is scrutinized. Researchers are actively working on reducing energy consumption through strategies such as tiny networks, pruning approaches, and weight quantization. Additionally, the book sheds light on the challenges posed by the physical size of AI accelerators for edge devices. The central focus of the book is an in-depth examination of SNNs' capabilities in radar data processing, featuring the development of optimized algorithms.
Über den Autor

Muhammad Arsalan received the [...]. degree in Computational Engineering from the University of Rostock, and the [...]. degree in Biomedical Computing from the Technical University of Munich. He is currently working as a Senior Data Scientist.

Inhaltsverzeichnis

Introduction.- Background.- Signal Processing Chain with Spiking Neural Networks for Radar-based Gesture Sensing.- Radar-based Air-writing for Embedded Devices.- Time Series Forecasting of Healthcare Data.- Conclusion and Future Directions.

Details
Erscheinungsjahr: 2024
Fachbereich: Technik allgemein
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: li
209 S.
3 s/w Illustr.
82 farbige Illustr.
209 p. 85 illus.
82 illus. in color. Textbook for German language market.
ISBN-13: 9783658453176
ISBN-10: 3658453176
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Arsalan, Muhammad
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 210 x 148 x 15 mm
Von/Mit: Muhammad Arsalan
Erscheinungsdatum: 02.09.2024
Gewicht: 0,346 kg
Artikel-ID: 129440432
Über den Autor

Muhammad Arsalan received the [...]. degree in Computational Engineering from the University of Rostock, and the [...]. degree in Biomedical Computing from the Technical University of Munich. He is currently working as a Senior Data Scientist.

Inhaltsverzeichnis

Introduction.- Background.- Signal Processing Chain with Spiking Neural Networks for Radar-based Gesture Sensing.- Radar-based Air-writing for Embedded Devices.- Time Series Forecasting of Healthcare Data.- Conclusion and Future Directions.

Details
Erscheinungsjahr: 2024
Fachbereich: Technik allgemein
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: li
209 S.
3 s/w Illustr.
82 farbige Illustr.
209 p. 85 illus.
82 illus. in color. Textbook for German language market.
ISBN-13: 9783658453176
ISBN-10: 3658453176
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Arsalan, Muhammad
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 210 x 148 x 15 mm
Von/Mit: Muhammad Arsalan
Erscheinungsdatum: 02.09.2024
Gewicht: 0,346 kg
Artikel-ID: 129440432
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte