Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Online Sketch-Based Image Retrieval Using Geometrical Keyshape Mining
Taschenbuch von Huda Alamwee (u. a.)
Sprache: Englisch

59,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
Developing an accurate and efficient Sketch-Based Image Retrieval (SBIR) method in determining the resemblances between the user's query and image stream has been a never-ending quest in digital data communication era. The main challenge is to overcome the asymmetry between a binary sketch and a full-color image. We introduce a unique sketch board mining method to recover the online web images. This image conceptual retrieval is performed by matching the sketch query with the relevant terminology of selected images. A systematic sequence is followed, including the sketch drawing by the user in interpreting its geometrical shape of the conceptual form based on annotation metadata matching technique achieved automatically from Google engines, indexing and clustering the selected images via data mining. The proposed technique solved many problems that stat-of-art suffered from SBIR (e.g. scaling, transport, imperfect) sketch. Furthermore, it is demonstrated that the proposed technique allowed us to exploit high-level features to search the web semantically effective.
Developing an accurate and efficient Sketch-Based Image Retrieval (SBIR) method in determining the resemblances between the user's query and image stream has been a never-ending quest in digital data communication era. The main challenge is to overcome the asymmetry between a binary sketch and a full-color image. We introduce a unique sketch board mining method to recover the online web images. This image conceptual retrieval is performed by matching the sketch query with the relevant terminology of selected images. A systematic sequence is followed, including the sketch drawing by the user in interpreting its geometrical shape of the conceptual form based on annotation metadata matching technique achieved automatically from Google engines, indexing and clustering the selected images via data mining. The proposed technique solved many problems that stat-of-art suffered from SBIR (e.g. scaling, transport, imperfect) sketch. Furthermore, it is demonstrated that the proposed technique allowed us to exploit high-level features to search the web semantically effective.
Über den Autor
Dr. Huda A. Al-Amwee, PhD: Studied Software Specification in UTM University. Achieved Patent from MyIpo ( ICC)/ Malaysia ; Project online drawing Sketch to used in E-learning, Malaysia. Work Lecturer in Almustansereha University /Computer Science Department/ Iraq/ Baghdad.
Details
Erscheinungsjahr: 2017
Fachbereich: Bildungswesen
Genre: Erziehung & Bildung, Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Sozialwissenschaften
Medium: Taschenbuch
Inhalt: 216 S.
ISBN-13: 9783330351721
ISBN-10: 3330351721
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Alamwee, Huda
Sulong, Ghazali
Mohd, Siti Zaiton
Hersteller: LAP LAMBERT Academic Publishing
Verantwortliche Person für die EU: LAP Lambert Academic Publishing, Brivibas Gatve 197, ?-1039 Riga, customerservice@vdm-vsg.de
Maße: 220 x 150 x 13 mm
Von/Mit: Huda Alamwee (u. a.)
Erscheinungsdatum: 17.07.2017
Gewicht: 0,34 kg
Artikel-ID: 109563469
Über den Autor
Dr. Huda A. Al-Amwee, PhD: Studied Software Specification in UTM University. Achieved Patent from MyIpo ( ICC)/ Malaysia ; Project online drawing Sketch to used in E-learning, Malaysia. Work Lecturer in Almustansereha University /Computer Science Department/ Iraq/ Baghdad.
Details
Erscheinungsjahr: 2017
Fachbereich: Bildungswesen
Genre: Erziehung & Bildung, Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Sozialwissenschaften
Medium: Taschenbuch
Inhalt: 216 S.
ISBN-13: 9783330351721
ISBN-10: 3330351721
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Alamwee, Huda
Sulong, Ghazali
Mohd, Siti Zaiton
Hersteller: LAP LAMBERT Academic Publishing
Verantwortliche Person für die EU: LAP Lambert Academic Publishing, Brivibas Gatve 197, ?-1039 Riga, customerservice@vdm-vsg.de
Maße: 220 x 150 x 13 mm
Von/Mit: Huda Alamwee (u. a.)
Erscheinungsdatum: 17.07.2017
Gewicht: 0,34 kg
Artikel-ID: 109563469
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte