148,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields.
Chapter ¿Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.[...].
Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields.
Chapter ¿Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.[...].
David Reinkensmeyer is Professor in the Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, Biomedical Engineering, and Physical Medicine and Rehabilitation at the University of California Irvine. His research interests are in neuromuscular control, motor learning, robotics, and rehabilitation. A major goal of his research is to develop physically interacting, robotic and mechatronic devices to help the nervous system recover the ability to control movement of the arm, hand, and leg after neurologic injuries such as stroke and spinal cord injury. He is also investigating the computational mechanisms of human motor learning in order to provide a rational basis for designing movement training devices. He is Editor-in-Chief of the Journal of Neuroengineering and Rehabilitation. His laboratory has helped develop a variety of robotic devices for manipulating and measuring movement in humans and rodents, including two devices that have been successfully commercialized as Flint Rehabilitation's MusicGlove and as Hocoma's ArmeoSpring. He is a fellow of the American Institute for Medical and Biological Engineering.
Laura Marchal-Crespo is Associate Professor at the Department of Cognitive Robotics, Faculty 3mE (Mechanical, Maritime and Materials Engineering), Delft University of Technology, The Netherlands. Her research focuses on the general areas of human-machine interaction and biological learning and, in particular, the use of robotic devices and immersive virtual reality for the assessment and rehabilitation of patients with acquired brain injuries such as stroke. A major goal of her research is to gain a better understanding of the underlying mechanisms associated with the acquisition of novel motor skills in order to develop innovative technology to improve neurorehabilitation. She develops intelligent controllers that modulate movement errors based on patients' special needs, age, and training task characteristics using a wide selection of robotic devices for upper and lower limb rehabilitation. She further employs electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to identify neurocognitive markers underlying motor learning.
Volker Dietz, neurologist, is Professor Emeritus and Former Director of Spinal Cord Injury Center and Chair of Paraplegiology, University of Zürich, Balgrist Hospital, Switzerland. His research is focused on neuroplasticity, neurorehabilitation technology and regeneration and his laboratory has developed the first robotic device for the training of stepping movements in paraplegic and hemiplegic patients, the 'Locomat'. He retired in 2009, having worked at the University of Zürich since 1992. He is currently Senior Research Professor at the University Hospital Balgrist. Previously he had an educational grant at the National Institute for Neurology, Queen Square, London and after he held a position at the University of Freiburg and was guest professor at theMiami project to cure paralysis. He has been on the editorial board of the several journals of neurology and neurosciences. He has been awarded various honors and awards including the prestigious Sobek prize for novel achievements in neurorehabilitation in 2006 and the Schellenberg Prize for outstanding research in paraplegia in 2012.
Features new chapters covering the application of mobile technologies and wearable sensors
Consolidates significant advances in the field and the implications for clinical practice in neurorehabilitation
Written by international experts supporting neurorehabilitation
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Andere Fachgebiete |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: |
x
785 S. 32 s/w Illustr. 157 farbige Illustr. 785 p. 189 illus. 157 illus. in color. |
ISBN-13: | 9783031089947 |
ISBN-10: | 3031089944 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Reinkensmeyer, David J.
Dietz, Volker Marchal-Crespo, Laura |
Herausgeber: | David J Reinkensmeyer/Laura Marchal-Crespo/Volker Dietz |
Auflage: | 3rd ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 260 x 183 x 46 mm |
Von/Mit: | David J. Reinkensmeyer (u. a.) |
Erscheinungsdatum: | 16.11.2022 |
Gewicht: | 1,854 kg |
David Reinkensmeyer is Professor in the Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, Biomedical Engineering, and Physical Medicine and Rehabilitation at the University of California Irvine. His research interests are in neuromuscular control, motor learning, robotics, and rehabilitation. A major goal of his research is to develop physically interacting, robotic and mechatronic devices to help the nervous system recover the ability to control movement of the arm, hand, and leg after neurologic injuries such as stroke and spinal cord injury. He is also investigating the computational mechanisms of human motor learning in order to provide a rational basis for designing movement training devices. He is Editor-in-Chief of the Journal of Neuroengineering and Rehabilitation. His laboratory has helped develop a variety of robotic devices for manipulating and measuring movement in humans and rodents, including two devices that have been successfully commercialized as Flint Rehabilitation's MusicGlove and as Hocoma's ArmeoSpring. He is a fellow of the American Institute for Medical and Biological Engineering.
Laura Marchal-Crespo is Associate Professor at the Department of Cognitive Robotics, Faculty 3mE (Mechanical, Maritime and Materials Engineering), Delft University of Technology, The Netherlands. Her research focuses on the general areas of human-machine interaction and biological learning and, in particular, the use of robotic devices and immersive virtual reality for the assessment and rehabilitation of patients with acquired brain injuries such as stroke. A major goal of her research is to gain a better understanding of the underlying mechanisms associated with the acquisition of novel motor skills in order to develop innovative technology to improve neurorehabilitation. She develops intelligent controllers that modulate movement errors based on patients' special needs, age, and training task characteristics using a wide selection of robotic devices for upper and lower limb rehabilitation. She further employs electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to identify neurocognitive markers underlying motor learning.
Volker Dietz, neurologist, is Professor Emeritus and Former Director of Spinal Cord Injury Center and Chair of Paraplegiology, University of Zürich, Balgrist Hospital, Switzerland. His research is focused on neuroplasticity, neurorehabilitation technology and regeneration and his laboratory has developed the first robotic device for the training of stepping movements in paraplegic and hemiplegic patients, the 'Locomat'. He retired in 2009, having worked at the University of Zürich since 1992. He is currently Senior Research Professor at the University Hospital Balgrist. Previously he had an educational grant at the National Institute for Neurology, Queen Square, London and after he held a position at the University of Freiburg and was guest professor at theMiami project to cure paralysis. He has been on the editorial board of the several journals of neurology and neurosciences. He has been awarded various honors and awards including the prestigious Sobek prize for novel achievements in neurorehabilitation in 2006 and the Schellenberg Prize for outstanding research in paraplegia in 2012.
Features new chapters covering the application of mobile technologies and wearable sensors
Consolidates significant advances in the field and the implications for clinical practice in neurorehabilitation
Written by international experts supporting neurorehabilitation
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Andere Fachgebiete |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: |
x
785 S. 32 s/w Illustr. 157 farbige Illustr. 785 p. 189 illus. 157 illus. in color. |
ISBN-13: | 9783031089947 |
ISBN-10: | 3031089944 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Reinkensmeyer, David J.
Dietz, Volker Marchal-Crespo, Laura |
Herausgeber: | David J Reinkensmeyer/Laura Marchal-Crespo/Volker Dietz |
Auflage: | 3rd ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 260 x 183 x 46 mm |
Von/Mit: | David J. Reinkensmeyer (u. a.) |
Erscheinungsdatum: | 16.11.2022 |
Gewicht: | 1,854 kg |