Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
62,40 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Kategorien:
Beschreibung
With a machine learning approach and less focus on linguistic details, this natural language processing textbook introduces the fundamental mathematical and deep learning models for NLP in a unified framework. An invaluable, accessible and up-to-date tool for the upper undergraduate and graduate student, with sample code available online.
With a machine learning approach and less focus on linguistic details, this natural language processing textbook introduces the fundamental mathematical and deep learning models for NLP in a unified framework. An invaluable, accessible and up-to-date tool for the upper undergraduate and graduate student, with sample code available online.
Über den Autor
Yue Zhang is an associate professor at Westlake University. Before joining Westlake, he worked as a research associate at the University of Cambridge and then a faculty member at Singapore University of Technology and Design. His research interests lie in fundamental algorithms for NLP, syntax, semantics, information extraction, text generation, and machine translation. He serves as an action editor for TACL, and as area chairs of ACL, EMNLP, COLING, and NAACL. He gave several tutorials at ACL, EMNLP and NAACL, and won a best paper award at COLING in 2018.
Inhaltsverzeichnis
Part I. Basics: 1. Introduction; 2. Counting relative frequencies; 3. Feature vectors; 4. Discriminative linear classifiers; 5. A perspective from information theory; 6. Hidden variables; Part II. Structures: 7. Generative sequence labelling; 8. Discriminative sequence labelling; 9. Sequence segmentation; 10. Predicting tree structures; 11. Transition-based methods for structured prediction; 12. Bayesian models; Part III. Deep Learning: 13. Neural network; 14. Representation learning; 15. Neural structured prediction; 16. Working with two texts; 17. Pre-training and transfer learning; 18. Deep latent variable models; Index.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Allg. & vergl. Sprachwissenschaft |
Rubrik: | Sprachwissenschaft |
Medium: | Buch |
ISBN-13: | 9781108420211 |
ISBN-10: | 1108420214 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Zhang, Yue
Teng, Zhiyang |
Hersteller: | Cambridge University Press |
Maße: | 249 x 192 x 27 mm |
Von/Mit: | Yue Zhang (u. a.) |
Erscheinungsdatum: | 07.01.2021 |
Gewicht: | 1,17 kg |
Über den Autor
Yue Zhang is an associate professor at Westlake University. Before joining Westlake, he worked as a research associate at the University of Cambridge and then a faculty member at Singapore University of Technology and Design. His research interests lie in fundamental algorithms for NLP, syntax, semantics, information extraction, text generation, and machine translation. He serves as an action editor for TACL, and as area chairs of ACL, EMNLP, COLING, and NAACL. He gave several tutorials at ACL, EMNLP and NAACL, and won a best paper award at COLING in 2018.
Inhaltsverzeichnis
Part I. Basics: 1. Introduction; 2. Counting relative frequencies; 3. Feature vectors; 4. Discriminative linear classifiers; 5. A perspective from information theory; 6. Hidden variables; Part II. Structures: 7. Generative sequence labelling; 8. Discriminative sequence labelling; 9. Sequence segmentation; 10. Predicting tree structures; 11. Transition-based methods for structured prediction; 12. Bayesian models; Part III. Deep Learning: 13. Neural network; 14. Representation learning; 15. Neural structured prediction; 16. Working with two texts; 17. Pre-training and transfer learning; 18. Deep latent variable models; Index.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Allg. & vergl. Sprachwissenschaft |
Rubrik: | Sprachwissenschaft |
Medium: | Buch |
ISBN-13: | 9781108420211 |
ISBN-10: | 1108420214 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Zhang, Yue
Teng, Zhiyang |
Hersteller: | Cambridge University Press |
Maße: | 249 x 192 x 27 mm |
Von/Mit: | Yue Zhang (u. a.) |
Erscheinungsdatum: | 07.01.2021 |
Gewicht: | 1,17 kg |
Warnhinweis