Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Motivic Integration
Buch von Antoine Chambert-Loir (u. a.)
Sprache: Englisch

149,79 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration.
With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration.
With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.
Zusammenfassung

Includes the first complete treatment of geometric motivic integration in a monograph

Covers the construction of arc schemes and Greenberg schemes

Provides a complete discussion of questions concerning the Grothendieck ring of varieties and its algebraic structure

Inhaltsverzeichnis
Introduction.- Prologue: p-adic Integration.- Analytic Manifolds.- The Theorem of Batyrev-Kontsevich.- Igusa's Local Zeta Function.- The Grothendieck Ring of Varieties.- Additive Invariants on Algebraic Varieties.- Motivic Measures.- Cohomolical Realizations.- Localization, Completion, and Modification.- The Theorem of Bittner.- The Theorem of Larsen-Lunts and Its Applications.- Arc Schemes.- Weil Restriction.- Jet Schemes.- The Arc Scheme of a Variety.- Topological Properties of Arc Schemes.- The Theorem of Grinberg-Kazhdan-Drinfeld.- Greenberg Schemes.- Complete Discrete Valuation Rings.- The Ring Schemes Rn.- Greenberg Schemes.- Topological Properties of Greenberg Schemes.- Structure Theoremes for Greenberg Schemes.- Greenberg Approximation on Formal Schemes.- The Structure of the Truncation Morphisms.- Greenberg Schemes and Morphisms of Formal Schemes.- Motivic Integration.- Motivic Integration in the Smooth Case.- The Volume of a Constructibel Subset.- Measurable Subsets of Greenberg Schemes.- Motivic Integrals.- Semi-algebraic Subsets of Greenberg Schemes.- Applications.- Kapranov's Motivic Zeta Function.- Valuations and the Space of Arcs.- Motivic Volume and Birational Invariants.- Denef-Loeser's Zeta Function and the Monodromy Conjecture.- Motivic Invariants of Non-Archimedean Analytic Spaces.- Motivic Zeta Functions of Formal Shemes and Analytic Spaces.- Motivic Serre Invariants of Algebraic Varieties.- Appendix.- Constructibility in Algebraic Geometry.- Birational Geometry.- Formal and Non-Archimedean Geometry.- Index.- Bibliography.
Details
Erscheinungsjahr: 2018
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Progress in Mathematics
Inhalt: xx
526 S.
47 s/w Illustr.
526 p. 47 illus.
ISBN-13: 9781493978854
ISBN-10: 1493978853
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Chambert-Loir, Antoine
Sebag, Julien
Nicaise, Johannes
Auflage: 1st ed. 2018
Hersteller: Springer New York
Springer US, New York, N.Y.
Progress in Mathematics
Maße: 241 x 160 x 35 mm
Von/Mit: Antoine Chambert-Loir (u. a.)
Erscheinungsdatum: 15.09.2018
Gewicht: 0,98 kg
Artikel-ID: 111799927
Zusammenfassung

Includes the first complete treatment of geometric motivic integration in a monograph

Covers the construction of arc schemes and Greenberg schemes

Provides a complete discussion of questions concerning the Grothendieck ring of varieties and its algebraic structure

Inhaltsverzeichnis
Introduction.- Prologue: p-adic Integration.- Analytic Manifolds.- The Theorem of Batyrev-Kontsevich.- Igusa's Local Zeta Function.- The Grothendieck Ring of Varieties.- Additive Invariants on Algebraic Varieties.- Motivic Measures.- Cohomolical Realizations.- Localization, Completion, and Modification.- The Theorem of Bittner.- The Theorem of Larsen-Lunts and Its Applications.- Arc Schemes.- Weil Restriction.- Jet Schemes.- The Arc Scheme of a Variety.- Topological Properties of Arc Schemes.- The Theorem of Grinberg-Kazhdan-Drinfeld.- Greenberg Schemes.- Complete Discrete Valuation Rings.- The Ring Schemes Rn.- Greenberg Schemes.- Topological Properties of Greenberg Schemes.- Structure Theoremes for Greenberg Schemes.- Greenberg Approximation on Formal Schemes.- The Structure of the Truncation Morphisms.- Greenberg Schemes and Morphisms of Formal Schemes.- Motivic Integration.- Motivic Integration in the Smooth Case.- The Volume of a Constructibel Subset.- Measurable Subsets of Greenberg Schemes.- Motivic Integrals.- Semi-algebraic Subsets of Greenberg Schemes.- Applications.- Kapranov's Motivic Zeta Function.- Valuations and the Space of Arcs.- Motivic Volume and Birational Invariants.- Denef-Loeser's Zeta Function and the Monodromy Conjecture.- Motivic Invariants of Non-Archimedean Analytic Spaces.- Motivic Zeta Functions of Formal Shemes and Analytic Spaces.- Motivic Serre Invariants of Algebraic Varieties.- Appendix.- Constructibility in Algebraic Geometry.- Birational Geometry.- Formal and Non-Archimedean Geometry.- Index.- Bibliography.
Details
Erscheinungsjahr: 2018
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Progress in Mathematics
Inhalt: xx
526 S.
47 s/w Illustr.
526 p. 47 illus.
ISBN-13: 9781493978854
ISBN-10: 1493978853
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Chambert-Loir, Antoine
Sebag, Julien
Nicaise, Johannes
Auflage: 1st ed. 2018
Hersteller: Springer New York
Springer US, New York, N.Y.
Progress in Mathematics
Maße: 241 x 160 x 35 mm
Von/Mit: Antoine Chambert-Loir (u. a.)
Erscheinungsdatum: 15.09.2018
Gewicht: 0,98 kg
Artikel-ID: 111799927
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte