Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
44,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Die Kaufempfehlung, die Ihnen ein Webstore ausspricht, die Einschätzung, welcher Kunde kreditwürdig ist, oder die Analyse der Werttreiber von Immobilien ¿ alle diese Beispiele aus dem heutigen Leben sind Ergebnis moderner Verfahren der Datenanalyse. Dieses Buch führt in solche statistische Verfahren anhand der Programmiersprache R ein.
Ziel ist es, Leser mit der Art und Weise vertraut zu machen, wie führende Organisationen und Praktiker angewandte Statistik heute einsetzen. Weil sich mit der Digitalisierung auch die statistischen Verfahren verändert haben, vermittelt der Autor neben klassischen Analysemethoden wie Regression auch moderne Methoden wie Textmining und Random-Forest-Modelle. Dabei sind die Inhalte des Buchs durchgehend so aufbereitet, dass sie auch für Leser ohne umfangreiche mathematische Vorkenntnisse verständlich sind. Anhand von Fallbeispielen und Übungen werden die Leser durch alle Phasen der Datenanalyse geführt: Sie lernen, wie Daten eingelesen, aufbereitet, visualisiert, modelliert und kommuniziert werden können. Dabei wird vor allem die Aufbereitung, Umformung und Prüfung der Daten ausführlicher als in anderen Publikationen behandelt, da dieser Teil in der Praxis oft einen wesentlichen Teil des Aufwands ausmacht. Aber auch die Visualisierung bekommt viel Raum, denn gute Diagramme ermöglichen Einblicke, die Zahlen und Worte verbergen.Mit seinem praxisorientierten Ansatz will das Buch dazu befähigen,
alle grundlegenden Schritte eines Datenanalyseprojekts durchzuführen,
Daten kompetent in R zu bearbeiten,
simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
klassische und moderne Vorhersagemethoden anzuwenden und
betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Daten kompetent in R zu bearbeiten,
simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
klassische und moderne Vorhersagemethoden anzuwenden und
betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Sowohl Anwender ohne statistisches Grundlagenwissen als auch Nutzer mit Vorerfahrung lesen dieses Buch mit Gewinn. In verständlicher Sprache und anhand von anschaulichen Beispielen zeigt der Autor, wie moderne Datenanalyse heute funktioniert.
Die Kaufempfehlung, die Ihnen ein Webstore ausspricht, die Einschätzung, welcher Kunde kreditwürdig ist, oder die Analyse der Werttreiber von Immobilien ¿ alle diese Beispiele aus dem heutigen Leben sind Ergebnis moderner Verfahren der Datenanalyse. Dieses Buch führt in solche statistische Verfahren anhand der Programmiersprache R ein.
Ziel ist es, Leser mit der Art und Weise vertraut zu machen, wie führende Organisationen und Praktiker angewandte Statistik heute einsetzen. Weil sich mit der Digitalisierung auch die statistischen Verfahren verändert haben, vermittelt der Autor neben klassischen Analysemethoden wie Regression auch moderne Methoden wie Textmining und Random-Forest-Modelle. Dabei sind die Inhalte des Buchs durchgehend so aufbereitet, dass sie auch für Leser ohne umfangreiche mathematische Vorkenntnisse verständlich sind. Anhand von Fallbeispielen und Übungen werden die Leser durch alle Phasen der Datenanalyse geführt: Sie lernen, wie Daten eingelesen, aufbereitet, visualisiert, modelliert und kommuniziert werden können. Dabei wird vor allem die Aufbereitung, Umformung und Prüfung der Daten ausführlicher als in anderen Publikationen behandelt, da dieser Teil in der Praxis oft einen wesentlichen Teil des Aufwands ausmacht. Aber auch die Visualisierung bekommt viel Raum, denn gute Diagramme ermöglichen Einblicke, die Zahlen und Worte verbergen.Mit seinem praxisorientierten Ansatz will das Buch dazu befähigen,
alle grundlegenden Schritte eines Datenanalyseprojekts durchzuführen,
Daten kompetent in R zu bearbeiten,
simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
klassische und moderne Vorhersagemethoden anzuwenden und
betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Daten kompetent in R zu bearbeiten,
simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
klassische und moderne Vorhersagemethoden anzuwenden und
betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Sowohl Anwender ohne statistisches Grundlagenwissen als auch Nutzer mit Vorerfahrung lesen dieses Buch mit Gewinn. In verständlicher Sprache und anhand von anschaulichen Beispielen zeigt der Autor, wie moderne Datenanalyse heute funktioniert.
Über den Autor
Professor Dr. habil. Sebastian Sauer arbeitet als Hochschullehrer für Wirtschaftspsychologie an der FOM Hochschule für Oekonomie & Management in Nürnberg und versteht sich als Data Scientist. Daten mit R zu analysieren, ist aktuell eines seiner zentralen Interessensgebiete. Besonderes Augenmerk legt er auf den Erkenntnisbeitrag, den neue Analyseverfahren leisten. Neben dem "Wie" der Datenanalyse beschäftigen ihn die Grenzen und Gefahren, die die moderne Datenwissenschaft für den Einzelnen und die Zivilgesellschaft mit sich bringt. Außerdem engagiert er sich für das Thema Open Science und interessiert sich für die Frage, wie die Psychologie zur Klärung von Problemen mit gesellschaftlicher Relevanz beitragen kann. Sein Blog [...] dient ihm als Notizbuch sich entwickelnder Gedanken. Data Science für die Wirtschaft bietet er auf [...] an.
Zusammenfassung
Die Kaufempfehlung, die Ihnen ein Webstore ausspricht, die Einschätzung, welcher Kunde kreditwürdig ist, oder die Analyse der Werttreiber von Immobilien - alle diese Beispiele aus dem heutigen Leben sind Ergebnis moderner Verfahren der Datenanalyse. Dieses Buch führt in solche statistische Verfahren anhand der Programmiersprache R ein.
Ziel ist es, Leser mit der Art und Weise vertraut zu machen, wie führende Organisationen und Praktiker angewandte Statistik heute einsetzen. Weil sich mit der Digitalisierung auch die statistischen Verfahren verändert haben, vermittelt der Autor neben klassischen Analysemethoden wie Regression auch moderne Methoden wie Textmining und Random-Forest-Modelle. Dabei sind die Inhalte des Buchs durchgehend so aufbereitet, dass sie auch für Leser ohne umfangreiche mathematische Vorkenntnisse verständlich sind. Anhand von Fallbeispielen und Übungen werden die Leser durch alle Phasen der Datenanalyse geführt: Sie lernen, wie Daten eingelesen, aufbereitet, visualisiert, modelliert und kommuniziert werden können. Dabei wird vor allem die Aufbereitung, Umformung und Prüfung der Daten ausführlicher als in anderen Publikationen behandelt, da dieser Teil in der Praxis oft einen wesentlichen Teil des Aufwands ausmacht. Aber auch die Visualisierung bekommt viel Raum, denn gute Diagramme ermöglichen Einblicke, die Zahlen und Worte verbergen.Mit seinem praxisorientierten Ansatz will das Buch dazu befähigen,
- alle grundlegenden Schritte eines Datenanalyseprojekts durchzuführen,
- Daten kompetent in R zu bearbeiten,
- simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
- klassische und moderne Vorhersagemethoden anzuwenden und
- betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Sowohl Anwender ohne statistisches Grundlagenwissen als auch Nutzer mit Vorerfahrung lesen dieses Buch mit Gewinn. In verständlicher Sprache und anhand von anschaulichen Beispielen zeigt der Autor, wie moderne Datenanalyse heute funktioniert.
Inhaltsverzeichnis
Rahmen: Datenanalyse im Kontext.- Daten einlesen.- Daten aufbereiten.- Fallstudie zum Daten aufbereiten.- Daten visualisieren.- Fallstudie zum Daten visualisieren.- Daten modellieren.- Ein Abriss der statistischen Signifikanz.- Lineare Regression.- Logistische Regression.- Fallstudien zur Regression.- Baumbasierte Verfahren.- Clusteranalyse.- Dimensionsreduktion.- Textmining.
Details
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Recht, Sozialwissenschaften, Wirtschaft |
Rubrik: | Recht & Wirtschaft |
Medium: | Taschenbuch |
Reihe: | FOM-Edition |
Inhalt: |
xxi
562 S. 198 s/w Illustr. 42 farbige Illustr. 562 S. 240 Abb. 42 Abb. in Farbe. |
ISBN-13: | 9783658215866 |
ISBN-10: | 3658215860 |
Sprache: | Deutsch |
Herstellernummer: | 978-3-658-21586-6 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Sauer, Sebastian |
Auflage: | 1. Aufl. 2019 |
Hersteller: |
Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH FOM-Edition |
Verantwortliche Person für die EU: | Springer Gabler in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 240 x 168 x 32 mm |
Von/Mit: | Sebastian Sauer |
Erscheinungsdatum: | 07.02.2019 |
Gewicht: | 0,966 kg |
Über den Autor
Professor Dr. habil. Sebastian Sauer arbeitet als Hochschullehrer für Wirtschaftspsychologie an der FOM Hochschule für Oekonomie & Management in Nürnberg und versteht sich als Data Scientist. Daten mit R zu analysieren, ist aktuell eines seiner zentralen Interessensgebiete. Besonderes Augenmerk legt er auf den Erkenntnisbeitrag, den neue Analyseverfahren leisten. Neben dem "Wie" der Datenanalyse beschäftigen ihn die Grenzen und Gefahren, die die moderne Datenwissenschaft für den Einzelnen und die Zivilgesellschaft mit sich bringt. Außerdem engagiert er sich für das Thema Open Science und interessiert sich für die Frage, wie die Psychologie zur Klärung von Problemen mit gesellschaftlicher Relevanz beitragen kann. Sein Blog [...] dient ihm als Notizbuch sich entwickelnder Gedanken. Data Science für die Wirtschaft bietet er auf [...] an.
Zusammenfassung
Die Kaufempfehlung, die Ihnen ein Webstore ausspricht, die Einschätzung, welcher Kunde kreditwürdig ist, oder die Analyse der Werttreiber von Immobilien - alle diese Beispiele aus dem heutigen Leben sind Ergebnis moderner Verfahren der Datenanalyse. Dieses Buch führt in solche statistische Verfahren anhand der Programmiersprache R ein.
Ziel ist es, Leser mit der Art und Weise vertraut zu machen, wie führende Organisationen und Praktiker angewandte Statistik heute einsetzen. Weil sich mit der Digitalisierung auch die statistischen Verfahren verändert haben, vermittelt der Autor neben klassischen Analysemethoden wie Regression auch moderne Methoden wie Textmining und Random-Forest-Modelle. Dabei sind die Inhalte des Buchs durchgehend so aufbereitet, dass sie auch für Leser ohne umfangreiche mathematische Vorkenntnisse verständlich sind. Anhand von Fallbeispielen und Übungen werden die Leser durch alle Phasen der Datenanalyse geführt: Sie lernen, wie Daten eingelesen, aufbereitet, visualisiert, modelliert und kommuniziert werden können. Dabei wird vor allem die Aufbereitung, Umformung und Prüfung der Daten ausführlicher als in anderen Publikationen behandelt, da dieser Teil in der Praxis oft einen wesentlichen Teil des Aufwands ausmacht. Aber auch die Visualisierung bekommt viel Raum, denn gute Diagramme ermöglichen Einblicke, die Zahlen und Worte verbergen.Mit seinem praxisorientierten Ansatz will das Buch dazu befähigen,
- alle grundlegenden Schritte eines Datenanalyseprojekts durchzuführen,
- Daten kompetent in R zu bearbeiten,
- simulationsbasierte Inferenzstatistik anzuwenden und kritisch zu hinterfragen,
- klassische und moderne Vorhersagemethoden anzuwenden und
- betriebswirtschaftliche Fragestellungen mittels datengetriebener Vorhersagemodelle zu beantworten.
Sowohl Anwender ohne statistisches Grundlagenwissen als auch Nutzer mit Vorerfahrung lesen dieses Buch mit Gewinn. In verständlicher Sprache und anhand von anschaulichen Beispielen zeigt der Autor, wie moderne Datenanalyse heute funktioniert.
Inhaltsverzeichnis
Rahmen: Datenanalyse im Kontext.- Daten einlesen.- Daten aufbereiten.- Fallstudie zum Daten aufbereiten.- Daten visualisieren.- Fallstudie zum Daten visualisieren.- Daten modellieren.- Ein Abriss der statistischen Signifikanz.- Lineare Regression.- Logistische Regression.- Fallstudien zur Regression.- Baumbasierte Verfahren.- Clusteranalyse.- Dimensionsreduktion.- Textmining.
Details
Erscheinungsjahr: | 2019 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Recht, Sozialwissenschaften, Wirtschaft |
Rubrik: | Recht & Wirtschaft |
Medium: | Taschenbuch |
Reihe: | FOM-Edition |
Inhalt: |
xxi
562 S. 198 s/w Illustr. 42 farbige Illustr. 562 S. 240 Abb. 42 Abb. in Farbe. |
ISBN-13: | 9783658215866 |
ISBN-10: | 3658215860 |
Sprache: | Deutsch |
Herstellernummer: | 978-3-658-21586-6 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Sauer, Sebastian |
Auflage: | 1. Aufl. 2019 |
Hersteller: |
Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH FOM-Edition |
Verantwortliche Person für die EU: | Springer Gabler in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 240 x 168 x 32 mm |
Von/Mit: | Sebastian Sauer |
Erscheinungsdatum: | 07.02.2019 |
Gewicht: | 0,966 kg |
Sicherheitshinweis