Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Models in Statistical Physics and Quantum Field Theory
Taschenbuch von Harald Grosse
Sprache: Englisch

47,95 €*

-10 % UVP 53,49 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation­ ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis­ cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models.
In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation­ ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis­ cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models.
Inhaltsverzeichnis
1. Introduction.- 1.1 Phase Transitions - Critical Phenomena.- 2. Spin Systems.- 2.1 Ising Model - General Results.- 2.2 Heisenberg Model.- 2.3 ø4-Model.- 2.4 Two-Dimensional Ising Model.- 3. Two-Dimensional Field Theory.- 3.1 Solitons.- 3.2 Sectors in Field Theoretical Models.- 4. Lattice Gauge Models.- 4.1 Formulation.- 4.2 Rigorous Results.- 5. String Models.- 5.1 Introduction to Strings.- 6. Renormalization Group.- 6.1 Formulation.- 6.2 Application of the Renormalization Group Ideas to Special Models.- General References.
Details
Erscheinungsjahr: 1988
Fachbereich: Theoretische Physik
Genre: Mathematik, Medizin, Naturwissenschaften, Physik, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
151 S.
ISBN-13: 9783540193838
ISBN-10: 3540193839
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Grosse, Harald
Auflage: Softcover reprint of the original 1st edition 1988
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 244 x 170 x 10 mm
Von/Mit: Harald Grosse
Erscheinungsdatum: 06.09.1988
Gewicht: 0,296 kg
Artikel-ID: 102144960
Inhaltsverzeichnis
1. Introduction.- 1.1 Phase Transitions - Critical Phenomena.- 2. Spin Systems.- 2.1 Ising Model - General Results.- 2.2 Heisenberg Model.- 2.3 ø4-Model.- 2.4 Two-Dimensional Ising Model.- 3. Two-Dimensional Field Theory.- 3.1 Solitons.- 3.2 Sectors in Field Theoretical Models.- 4. Lattice Gauge Models.- 4.1 Formulation.- 4.2 Rigorous Results.- 5. String Models.- 5.1 Introduction to Strings.- 6. Renormalization Group.- 6.1 Formulation.- 6.2 Application of the Renormalization Group Ideas to Special Models.- General References.
Details
Erscheinungsjahr: 1988
Fachbereich: Theoretische Physik
Genre: Mathematik, Medizin, Naturwissenschaften, Physik, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
151 S.
ISBN-13: 9783540193838
ISBN-10: 3540193839
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Grosse, Harald
Auflage: Softcover reprint of the original 1st edition 1988
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 244 x 170 x 10 mm
Von/Mit: Harald Grosse
Erscheinungsdatum: 06.09.1988
Gewicht: 0,296 kg
Artikel-ID: 102144960
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte