Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematical Foundations of Neuroscience
Buch von David H. Terman (u. a.)
Sprache: Englisch

78,45 €*

-14 % UVP 90,94 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Zusammenfassung

Links both neuroscience and applied mathematics

Extensive illustrations, examples and exercises using real data

Includes supplementary material: [...]

Inhaltsverzeichnis
The Hodgkin-Huxley Equations.- Dendrites.- Dynamics.- The Variety of Channels.- Bursting Oscillations.- Propagating Action Potentials.- Synaptic Channels.- Neural Oscillators: Weak Coupling.- Neuronal Networks: Fast/Slow Analysis.- Noise.- Firing Rate Models.- Spatially Distributed Networks.
Details
Erscheinungsjahr: 2010
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xv
422 S.
38 farbige Illustr.
422 p. 38 illus. in color.
ISBN-13: 9780387877075
ISBN-10: 038787707X
Sprache: Englisch
Herstellernummer: 12103584
Einband: Gebunden
Autor: Terman, David H.
Ermentrout, G. Bard
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 31 mm
Von/Mit: David H. Terman (u. a.)
Erscheinungsdatum: 08.07.2010
Gewicht: 0,903 kg
Artikel-ID: 101534670
Zusammenfassung

Links both neuroscience and applied mathematics

Extensive illustrations, examples and exercises using real data

Includes supplementary material: [...]

Inhaltsverzeichnis
The Hodgkin-Huxley Equations.- Dendrites.- Dynamics.- The Variety of Channels.- Bursting Oscillations.- Propagating Action Potentials.- Synaptic Channels.- Neural Oscillators: Weak Coupling.- Neuronal Networks: Fast/Slow Analysis.- Noise.- Firing Rate Models.- Spatially Distributed Networks.
Details
Erscheinungsjahr: 2010
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xv
422 S.
38 farbige Illustr.
422 p. 38 illus. in color.
ISBN-13: 9780387877075
ISBN-10: 038787707X
Sprache: Englisch
Herstellernummer: 12103584
Einband: Gebunden
Autor: Terman, David H.
Ermentrout, G. Bard
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 31 mm
Von/Mit: David H. Terman (u. a.)
Erscheinungsdatum: 08.07.2010
Gewicht: 0,903 kg
Artikel-ID: 101534670
Sicherheitshinweis