Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Managing Mathematical Projects - with Success!
Taschenbuch von P. P. G. Dyke
Sprache: Englisch

42,25 €*

-1 % UVP 42,79 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Based on over twenty years' experience as supervisor and external examiner of project work in mathematics, Phil Dyke shows you how to get the best out of degree projects and case studies in mathematics. There are guidelines on setting up a project - be it individual or group - advice on time management, and tips on how to get the most out of verbal presentations and how to succeed in peer assessment. Pointers as to what the assessor will be looking for and advice on the all-important project write-up also provide an essential head start. This practical guide will be essential reading for students in the second or final year of a mathematics degree - or other courses with a high mathematical content - and a useful resource for lecturers and project advisors looking for ideas on how to devise, assess and manage projects.
Based on over twenty years' experience as supervisor and external examiner of project work in mathematics, Phil Dyke shows you how to get the best out of degree projects and case studies in mathematics. There are guidelines on setting up a project - be it individual or group - advice on time management, and tips on how to get the most out of verbal presentations and how to succeed in peer assessment. Pointers as to what the assessor will be looking for and advice on the all-important project write-up also provide an essential head start. This practical guide will be essential reading for students in the second or final year of a mathematics degree - or other courses with a high mathematical content - and a useful resource for lecturers and project advisors looking for ideas on how to devise, assess and manage projects.
Zusammenfassung
Based on over twenty years' experience as supervisor and external examiner of project work in mathematics, Phil Dyke shows you how to get the best out of degree projects and case studies in mathematics.

There are guidelines on setting up a project - be it individual or group - advice on time management, and tips on how to get the most out of verbal presentations and how to succeed in peer assessment. Pointers as to what the assessor will be looking for and advice on the all-important project write-up also provide an essential head start.

This practical guide will be essential reading for students in the second or final year of a mathematics degree - or other courses with a high mathematical content - and a useful resource for lecturers and project advisors looking for ideas on how to devise, assess and manage projects.
Inhaltsverzeichnis
1. Introduction and Organisation
1.1 Individual Projects
1.2 Group Projects
1.3 Case Studies
2. Assessment
2.1 Introduction
2.2 Interim Reports
2.3 Verbal Presentations
2.4 Final Report
2.5 Moderating
2.6 Assessment of Case Studies
3. Individual Projects
3.1 Introduction
3.2 Selecting a Project
3.3 Report Writing
3.4 Non-Euclidean Geometry
3.4.1 Scope
3.4.2 Project Details
3.5 Boomerangs
3.5.1 Scope
3.5.2 Project Details
3.6 Hurricane Dynamics
3.6.1 Scope
3.6.2 Project Details
3.7 Hypergeometric Functions
3.7.1 Scope
3.7.2 Project Details
3.8 Summary
3.9 Project Examples
4. Group Projects
4.1 Introduction
4.2 Setting up Group Projects
4.2.1 Peer Assessment
4.2.2 Dividing into Groups
4.3 Estuarial Diffusion
4.4 Graphs and Networks
4.5 Fourier Transforms
4.6 Orbital Motion
4.7 Conclusion
4.8 Further Suggestions
5. Case Studies
5.1 Introduction
5.2 Ocean Surface Dynamics
5.3 Non-linear Oscillations
5.4 Traffic Flow
5.5 Contour Integral Solutions to ODEs
5.6 Optimisation
5.7 Euler and Series
5.8 Summary
5.9 Exercises
A. Project Example 1: Topics in Galois Theory
A.1 Galois' Approach
A.1.1 Preparation
A.1.2 The Galois Resolvent
A.1.3 The Galois Group
A.1.4 Soluble Equations and Soluble Groups
A.2 The Modern Approach
A.2.1 Field Extension
A.2.2 The Galois Group
A.2.3 Applying Galois Theory
A.3 Soluble Groups
A.3.1 Normal Subgroup Series
A.3.2 Normal Subgroups
A.3.3 Simple Groups
A.3.4 p-Groups
A.4 Geometrical Constructions
A.4.1 Constructible Points
A.4.2 Impossibility Proofs
A.4.3 Performing Algebraic Operations by Construction
A.4.4 Regular n-gons
B. Project Example 2: Algebraic Curves
B.1 Basic De.nitions and Properties
B.1.1 Complex Algebraic Curves and Real Algebraic Curves
B.1.2 Projective Spaces
B.1.3 [...] and Projective Curves
B.1.4 Singular Points
B.2 Intersection of Two Curves and Points of Inflection
B.2.1 Bezout's Theorem
B.2.2 Points of Inflection on a Curve
B.3 Conics and Cubics
B.3.1 Conics
B.3.2 Cubics
B.3.3 Additive Group Structure on a Cubic
B.4 Complex Analysis
B.4.1 Holomorphic Functions and Entire Functions
B.4.2 Closed Curve Theorem and Line Integrals
B.4.3 Liouville's Theorem and Fundamental Theorem of Algebra
B.4.4 Properties of Holomorphic Functions
B.4.5 General Cauchy Closed Curve Theorem
B.4.6 Isolated Singularities and Removable Singularities
B.4.7 Laurent Expansions
B.4.8 Residue Theorem
B.4.9 Conformal Mapping
B.5 Topology and Riemann Surfaces
B.5.1 Topology of Complex Algebraic Curves
B.5.2 Riemann Surfaces
B.5.3 Degeneration of a Cubic
B.5.4 Singularities and Riemann Surfaces
B.6 Further Topics
B.6.1 The Weierstrass Function
B.6.2 Differential Forms on a Riemann Surface
B.6.3 Abel's Theorem
C. Project Example 3: Water Waves on a Sloping Beach
C.1 Abstract
C.2 Introduction
C.3 Surface Waves
C.3.1 The Current
C.3.2 The Boundary Conditions
C.3.3 A Separable Solution of Laplace's Equation
C.4 [No Title]
C.4.1 The Velocity of the Waves
C.4.2 The Group Velocity of the Waves
C.4.3 The Motion of the Particles
C.4.4 Breaking Waves in Shallow Water
C.5 [No Title]
C.5.1 Plane Waves
C.5.2 Wave Rays
C.5.3 The Waves Approaching a Beach
C.5.4 Wave rays in shallow water
C.6 [No Title]
C.6.1 Conclusion and Discussion
Index
Details
Erscheinungsjahr: 2004
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: xiv
266 S.
59 s/w Illustr.
ISBN-13: 9781852337360
ISBN-10: 1852337362
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Dyke, P. P. G.
Hersteller: Springer London
Springer-Verlag London Ltd.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 254 x 178 x 16 mm
Von/Mit: P. P. G. Dyke
Erscheinungsdatum: 19.01.2004
Gewicht: 0,54 kg
Artikel-ID: 102481388
Zusammenfassung
Based on over twenty years' experience as supervisor and external examiner of project work in mathematics, Phil Dyke shows you how to get the best out of degree projects and case studies in mathematics.

There are guidelines on setting up a project - be it individual or group - advice on time management, and tips on how to get the most out of verbal presentations and how to succeed in peer assessment. Pointers as to what the assessor will be looking for and advice on the all-important project write-up also provide an essential head start.

This practical guide will be essential reading for students in the second or final year of a mathematics degree - or other courses with a high mathematical content - and a useful resource for lecturers and project advisors looking for ideas on how to devise, assess and manage projects.
Inhaltsverzeichnis
1. Introduction and Organisation
1.1 Individual Projects
1.2 Group Projects
1.3 Case Studies
2. Assessment
2.1 Introduction
2.2 Interim Reports
2.3 Verbal Presentations
2.4 Final Report
2.5 Moderating
2.6 Assessment of Case Studies
3. Individual Projects
3.1 Introduction
3.2 Selecting a Project
3.3 Report Writing
3.4 Non-Euclidean Geometry
3.4.1 Scope
3.4.2 Project Details
3.5 Boomerangs
3.5.1 Scope
3.5.2 Project Details
3.6 Hurricane Dynamics
3.6.1 Scope
3.6.2 Project Details
3.7 Hypergeometric Functions
3.7.1 Scope
3.7.2 Project Details
3.8 Summary
3.9 Project Examples
4. Group Projects
4.1 Introduction
4.2 Setting up Group Projects
4.2.1 Peer Assessment
4.2.2 Dividing into Groups
4.3 Estuarial Diffusion
4.4 Graphs and Networks
4.5 Fourier Transforms
4.6 Orbital Motion
4.7 Conclusion
4.8 Further Suggestions
5. Case Studies
5.1 Introduction
5.2 Ocean Surface Dynamics
5.3 Non-linear Oscillations
5.4 Traffic Flow
5.5 Contour Integral Solutions to ODEs
5.6 Optimisation
5.7 Euler and Series
5.8 Summary
5.9 Exercises
A. Project Example 1: Topics in Galois Theory
A.1 Galois' Approach
A.1.1 Preparation
A.1.2 The Galois Resolvent
A.1.3 The Galois Group
A.1.4 Soluble Equations and Soluble Groups
A.2 The Modern Approach
A.2.1 Field Extension
A.2.2 The Galois Group
A.2.3 Applying Galois Theory
A.3 Soluble Groups
A.3.1 Normal Subgroup Series
A.3.2 Normal Subgroups
A.3.3 Simple Groups
A.3.4 p-Groups
A.4 Geometrical Constructions
A.4.1 Constructible Points
A.4.2 Impossibility Proofs
A.4.3 Performing Algebraic Operations by Construction
A.4.4 Regular n-gons
B. Project Example 2: Algebraic Curves
B.1 Basic De.nitions and Properties
B.1.1 Complex Algebraic Curves and Real Algebraic Curves
B.1.2 Projective Spaces
B.1.3 [...] and Projective Curves
B.1.4 Singular Points
B.2 Intersection of Two Curves and Points of Inflection
B.2.1 Bezout's Theorem
B.2.2 Points of Inflection on a Curve
B.3 Conics and Cubics
B.3.1 Conics
B.3.2 Cubics
B.3.3 Additive Group Structure on a Cubic
B.4 Complex Analysis
B.4.1 Holomorphic Functions and Entire Functions
B.4.2 Closed Curve Theorem and Line Integrals
B.4.3 Liouville's Theorem and Fundamental Theorem of Algebra
B.4.4 Properties of Holomorphic Functions
B.4.5 General Cauchy Closed Curve Theorem
B.4.6 Isolated Singularities and Removable Singularities
B.4.7 Laurent Expansions
B.4.8 Residue Theorem
B.4.9 Conformal Mapping
B.5 Topology and Riemann Surfaces
B.5.1 Topology of Complex Algebraic Curves
B.5.2 Riemann Surfaces
B.5.3 Degeneration of a Cubic
B.5.4 Singularities and Riemann Surfaces
B.6 Further Topics
B.6.1 The Weierstrass Function
B.6.2 Differential Forms on a Riemann Surface
B.6.3 Abel's Theorem
C. Project Example 3: Water Waves on a Sloping Beach
C.1 Abstract
C.2 Introduction
C.3 Surface Waves
C.3.1 The Current
C.3.2 The Boundary Conditions
C.3.3 A Separable Solution of Laplace's Equation
C.4 [No Title]
C.4.1 The Velocity of the Waves
C.4.2 The Group Velocity of the Waves
C.4.3 The Motion of the Particles
C.4.4 Breaking Waves in Shallow Water
C.5 [No Title]
C.5.1 Plane Waves
C.5.2 Wave Rays
C.5.3 The Waves Approaching a Beach
C.5.4 Wave rays in shallow water
C.6 [No Title]
C.6.1 Conclusion and Discussion
Index
Details
Erscheinungsjahr: 2004
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: xiv
266 S.
59 s/w Illustr.
ISBN-13: 9781852337360
ISBN-10: 1852337362
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Dyke, P. P. G.
Hersteller: Springer London
Springer-Verlag London Ltd.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 254 x 178 x 16 mm
Von/Mit: P. P. G. Dyke
Erscheinungsdatum: 19.01.2004
Gewicht: 0,54 kg
Artikel-ID: 102481388
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte

Taschenbuch
-14 %